项目名称: 高强高导铜铬锆合金晶体生长行为及电磁场调控机制

项目编号: No.U1332115

项目类型: 联合基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 王同敏

作者单位: 大连理工大学

项目金额: 72万元

中文摘要: 随着我国高铁网络的迅猛扩展及时速记录的不断刷新,对高铁接触线铜合金材料的结构强度与导电功能提出了越来越高的要求。高强高导铜铬锆合金是运行速度大于300km/h高速列车接触线的重要用材,接触线性能直接关系着高铁运行的安全。我们的前期研究结果表明施加电磁场可有效改善铜铬锆合金的凝固组织与力学性能,但由于原位分析手段的缺失,对电磁场调控的微观动力学机制缺乏足够的认知,这已成为制约工艺进一步发展的瓶颈。本项目依托我国大科学装置,应用高能同步辐射硬X射线原位成像与衍射技术,对电磁场调控下铜铬锆合金凝固过程中晶体的形核与生长、成分迁移、缺陷形成等进行实时成像与原位表征。系统研究电磁参数、凝固条件等对铜铬锆合金晶体生长行为的调控规律,深入理解电磁场调控铜铬锆合金凝固组织的动力学机制,为发展适合于工业应用的铜铬锆合金电磁连铸技术提供理论依据,满足高铁发展对结构功能一体化材料的需求。

中文关键词: 高强高导;铜合金;同步辐射;衍射;相变

英文摘要: High strenghth and high conductivity contact line is quite important for high way. Cu-Cr-Zr copper alloy is the key material for preparing the contact line in case of the speed over 350km/h. Our previous work indicated that electromagnetic field can effectively improve the structure and performance of Cu-Cr-Zr alloy. However, the modification mechanism especially the dynamics is still not clear due to the lack of in-situ testing method. In this project, the solidification behavior (grain growth, defect formation, solute transfer etc.) will be in-situ investigated by synchrotron radiation imaging and diffraction techniques. The effects of electromagnetic field and cooling conditions on solidification structure will be studied in detail. Thus, the dynamics mechanism of electromagnetic modification can be discovered, which is important for improving the electromagnetic continuous casting technology.

英文关键词: High strength high conductivity;Copper alloys;Synchrotron radiation;Diffraction;Phase transformation

成为VIP会员查看完整内容
0

相关内容

清华大学:从单体仿生到群体智能
专知会员服务
62+阅读 · 2022年2月9日
智能无人集群系统发展白皮书
专知会员服务
274+阅读 · 2021年12月20日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
38+阅读 · 2021年2月8日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关主题
相关VIP内容
清华大学:从单体仿生到群体智能
专知会员服务
62+阅读 · 2022年2月9日
智能无人集群系统发展白皮书
专知会员服务
274+阅读 · 2021年12月20日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
38+阅读 · 2021年2月8日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员