项目名称: 有机热活性型延迟荧光材料的分子设计与性能研究
项目编号: No.21503056
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 王丽娟
作者单位: 哈尔滨工业大学
项目金额: 21万元
中文摘要: 有机热活性型延迟荧光(TADF)材料以其成本低、资源丰富和易于制取等优点而成为下一代有机电致发光(OLEDs)技术非常有前途的候选者。然而目前具有高效TADF性质的有机材料仍然较少,对该类材料的发光机制尚缺乏系统的理论研究。本项目基于DFT和TD-DFT等理论方法,首先,以实验上具有TADF性质的给体-受体(D-A)型和给体-受体-给体(D-A-D)型有机材料体系为研究对象,寻找合理有效的计算方法对其TADF性质进行研究,并基于该方法探索TADF过程的内在机理;其次,通过前面的计算方法设计一系列D-π-A型、D-A-D型和D-π-A-π-D型有机分子;最后,对拟设计分子的TADF性质进行预测,选出可能作为高效TADF材料的目标分子。通过本项目的研究,揭示有机材料TADF过程的内在机理,发展合理有效的计算方法设计新型有机TADF材料,为实验上获取该类材料,提高OLEDs器件效率提供理论指导。
中文关键词: 有机电致发光;热活性型延迟荧光;激发态;密度泛函理论;分子设计
英文摘要: Organic thermally activated delayed fluorescence (TADF) material is becoming a very promising candidate for the next generation OLEDs technique due to its low costs, abundant resources and easy preparation. However, there are only a few organic molecules showing TADF property with high efficiency, and there is still a lack of systematically theoretical investigations about the intrinsic luminescent mechanism for this kind of materials. The present proposal is based on the DFT and TD-DFT methods, firstly, the Donor-Acceptor (D-A) and Donor-Acceptor-Donor (D-A-D) systems which exhibit high TADF efficiency experimentally are selected to find a reasonable and effective theoretical method to investigate their TADF property, and then explore the intrinsic mechanism of the TADF process based on this method. Secondly, a series of organic molecules with D-π-A, D-A-D and D-π-A-π-D types will be designed via the above theoretical methods. Finally, the TADF property of all the designed molecules will be estimated, and promising molecules which may be used as effective TADF materials are aimed to be obtained. Through the present proposal, we are aiming to uncover the intrinsic mechanism of the TADF process for organic materials, and develop a reasonable and effective method to design novel effective organic TADF material, providing theoretical guidelines for designing new materials experimentally and enhancing OLEDs device efficiency.
英文关键词: Organic Electroluminescence;Thermally Activated Delayed Fluorescence;Excited States;Density Functional Theory;Molecular Design