项目名称: 超临界二氧化碳中耦合纳米半导体的制备及光催化处理有机氯代污染物的研究

项目编号: No.21207089

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 环境化学

项目作者: 常飞

作者单位: 上海理工大学

项目金额: 23万元

中文摘要: 本研究拟采用绿色环保的超临界二氧化碳为溶剂直接制备SBA-15介孔材料负载的耦合纳米半导体WO3-TiO2,根据制备条件的不同得到微观结构和微观形貌不同的催化体系。利用WO3-TiO2耦合材料的高可见光利用率和强催化降解功能,结合多孔材料的高比表面和强吸附特性,进行水体中有机氯代污染物的可见光光催化降解研究。通过分析光催化降解结果,优化催化剂结构,筛选最佳的降解条件,建立一套高效的催化体系。并通过分析反应中间体和反应最终产物的结构,推测可能的反应机理。本研究不仅为可见光光催化降解有机氯代污染物提供一种新方法,也为耦合纳米半导体在污染物治理和环境修复方面的应用提供经验积累。

中文关键词: 光催化;复合纳米半导体;超临界二氧化碳;有毒有机污染物;机理

英文摘要: A series of nanocomposites WO3-TiO2 supported onto mesoporous material SBA-15 are proposed to prepare in this project to catalyze photodegradation of chlorinated organic pollutants in wastewater under visible light. Supercritical carbon dioxide will be adopted as a reaction medium due to the environmentally benign features. These as-prepared nanocomposites will be favorable to photocatalysis under optimal conditions because of strong visible light response and high degradation efficiency. After photocatalysis, the procedure of nanocomposites synthesis will be carefuylly modified to optimize the catalytic ability. In addition, a mechanism of photodegradation will be speculated on the basis of intermediates and final products detected during the process.Ultimately, an efficient catalytic system is hopefully constructed aiming for complete degradation of chlorinated organics in wastewater.

英文关键词: photocatalysis;semiconductor nanocomposites;supercritical carbon dioxide;toxic organic pollutants;mechanism

成为VIP会员查看完整内容
0

相关内容

数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
66+阅读 · 2021年7月4日
专知会员服务
56+阅读 · 2021年6月9日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
72+阅读 · 2021年3月27日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
20+阅读 · 2020年11月6日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
准确率达 95%,机器学习预测复杂新材料合成
机器之心
1+阅读 · 2022年1月1日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
46+阅读 · 2021年10月4日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
25+阅读 · 2018年1月24日
小贴士
相关VIP内容
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
66+阅读 · 2021年7月4日
专知会员服务
56+阅读 · 2021年6月9日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
72+阅读 · 2021年3月27日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
20+阅读 · 2020年11月6日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员