项目名称: 基于光子晶体异构微腔的硅基电致发光器件基础研究

项目编号: No.61205044

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 王玥

作者单位: 中国科学院半导体研究所

项目金额: 27万元

中文摘要: 硅基发光器件是硅基光电子集成技术中的关键,如何实现高效的硅基发光一直是科学与工程学界的研究热点。本项目尝试在SOI衬底上设计、制作基于光子晶体异构微腔的硅基电致发光器件。利用基于光子晶体模式隙(mode-gap)效应的新型异构微腔提高掺铒硅材料的发光效率,构建p-Er:Si-n式电致发光结构,研制出具备高Q值、小模式体积、1550nm单模谐振波长及高发光增强因子的硅基发光芯片样品。主要研究内容包括新型光子晶体异构微腔结构的建模及特性分析,高质量SOI基掺铒硅材料制备及性能优化、电注入结构设计及优化,高精度光子晶体异构微腔及电致发光器件制作工艺设计与优化,器件电致发光特性测试及物理机制分析等。该技术的突破必将促进硅基光电子集成的高速发展,并在光互连、光通信等领域发挥其巨大应用潜力,对我国信息产业的发展具有重大意义。

中文关键词: 光子晶体;异构微腔;光致发光;电致发光;掺铒硅

英文摘要: Si-based light-emitting device is the key technology of the Si-based optoelectronic integration, and how to realize high-efficiency Si-based luminescence has always been the research hotspot in the science and engineering field. This project attempts to design and fabricate the Si-based electroluminescent devices based on photonic crystal heterostructre microcavity on SOI substrate. We wants to improve the luminous efficiency of the Er-doped Si material by the new heterostructure microcavity based on the photonic crystal mode-gap effect, build p-Er:Si-n electroluminescent structure, and develope Si-based light-emitting chip sample with high Q-value, low mode volume, 1550nm single-mode resonant wavelength, and high luminous enhancement factor. The research includes modeling and characteristic analysis of the novel photonic crystal heterostructure microcavity, preparation of high quality SOI-based Er-doped Si material, design and optimization of electrically-injected structure, manufacture and optimization of high-accuracy photonic crystal heterostructure microcavity and electroluminescent device, performance and physical mechanism analysis of electroluminescence, and so on. The breakthrough in this technology will promote the rapid development of Si-based optoelectronic integration, and take advantage of its h

英文关键词: Photonic crystal;Heterostructure microcavity;Photoluminescence;Electroluminescence;Er-doped Si

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
专知会员服务
52+阅读 · 2021年10月1日
《6G总体愿景与潜在关键技术》白皮书,32页pdf
专知会员服务
104+阅读 · 2021年6月8日
专知会员服务
142+阅读 · 2021年6月1日
专知会员服务
18+阅读 · 2020年12月23日
新时期我国信息技术产业的发展
专知会员服务
69+阅读 · 2020年1月18日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
时间晶体,直到世界尽头的浪漫
学术头条
0+阅读 · 2022年3月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员