项目名称: 高能激光驱动的X射线成像与X射线衍射实验技术探索

项目编号: No.U1530150

项目类型: 联合基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 陈黎明

作者单位: 中国科学院物理研究所

项目金额: 64万元

中文摘要: 压缩科学中的超快动力学诊断在材料、国防等领域具有重大的创新意义,其对X射线辐射源诊断系统提出了高能、高分辨、单发诊断等严格的要求,但目前同步辐射等光源还难以全面地满足这些需求。本申请计划利用激光驱动尾波加速极高的加速梯度(GV/cm)和微米量级的“等离子体波荡器”,产生微米源尺寸、高度准直、飞秒时间分辨的高能(>100keV)台面Betatron辐射光源,可满足上述动力学诊断的应用需求。然而目前基于“自注入”激光电子加速驱动的betatron辐射源的参数稳定性差、单发产额低、高能X射线产生困难。我们计划利用百TW超短脉冲的“电离注入”加速机制来增强Betatron辐射。由于这种方式可缩短电子注入的时间,被加速的电子可以尽快进入失相共振从而产生大量高能的Betatron辐射。并计划在此基础上建立时间分辨超快诊断装置,开展晶体样品的成像、衍射等动力学诊断。

中文关键词: 超短超强激光;betatron辐射;电子加速;X射线成像

英文摘要: Ultrafast dynamic diagnosis in Compression Science has great significence in field of material science and national defense. It puts forward strict requirements for the X-ray radiation source diagnostic system as high photon energy, high resolution, single shot diagnosis and so on. The synchrotron radiation light source is difficult to fully meet all these requirements. Laser driver wakefield accelerator have extremely high accelerating gradient (GV/cm) and micrometer size plasma undulator, which can produce micro-source size, highly collimated, femtosecond time-resolving high-energy (> 100 kev) table-top Betatron radiation light source, which can meet the application requirements of the dynamic diagnosis. However, at present, laser-driven radiation source based on self-injection electron acceleration possess disadvantages of low stability, low yield and low X-ray photon energy. We plan to use the 100 TW ultra-short pulse driven ionization injection electron acceleration mechanisms to strengthen the Betatron radiation. It can shorten the time of the electron injection, and the accelerated electrons can be experice phase rotation point as soon as possible and involve in resonance with laser E-field, to produce large amounts of high-energy radiation Betatron. We also plan to construct time-resolving ultrafast dynamic detection system, and carry on the X-ray imaging/diffraction study of the sample.

英文关键词: ultrashort intene laser;Betatron radiation;electron acceleration;X-ray imaging

成为VIP会员查看完整内容
0

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
19+阅读 · 2022年4月15日
《数据中台交付标准化》白皮书
专知会员服务
124+阅读 · 2022年3月21日
数据中心传感器技术应用 白皮书
专知会员服务
42+阅读 · 2021年11月13日
专知会员服务
22+阅读 · 2021年8月23日
专知会员服务
23+阅读 · 2021年7月15日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
38+阅读 · 2021年5月9日
这次遥控大脑实验成功了,却把网友们吓坏了
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月4日
Arxiv
0+阅读 · 2022年4月30日
小贴士
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
19+阅读 · 2022年4月15日
《数据中台交付标准化》白皮书
专知会员服务
124+阅读 · 2022年3月21日
数据中心传感器技术应用 白皮书
专知会员服务
42+阅读 · 2021年11月13日
专知会员服务
22+阅读 · 2021年8月23日
专知会员服务
23+阅读 · 2021年7月15日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
38+阅读 · 2021年5月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员