项目名称: 高通量荧光增强生物芯片的纳米周期结构制造

项目编号: No.21275064

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 崔小强

作者单位: 吉林大学

项目金额: 78万元

中文摘要: 金属纳米周期结构具有非常特殊的表面等离激元共振(SPR)特性,是发展高通量、高灵敏生物芯片的理想基底。本项目设计加工图案化纳米周期结构,通过沉积金属纳米薄膜激发SPR,研究用于微阵列分析的、易集成、高灵敏生物芯片的新型制造方法。项目包含四个主要内容:①结构设计;②性质表征;③构建新型传感器件;④建立纳米压印制造工艺。通过理论模拟设计纳米周期结构SPR特性;用自制SPR增强荧光检测装置进行表征;研究表面纳米周期结构的光电特性及其调制过程,实现传感片表面荧光增强的高通量微阵列生物芯片检测;最终建立包括模板加工、材料筛选及压印复制、高通量分析等关键技术方法。本项目将基础研究与开发应用相结合,项目的完成将为新一代生物分析检测技术提供关键材料、器件和制造方法,促进新兴SPR材料学在生物芯片及光电子学的发展,具有重要的学术意义和实用价值。

中文关键词: 生物传感;等离激元纳米周期结构;催化剂;金属纳米粒子;

英文摘要: Plasmonic material is an ideal substrate for developing new ultra sensitive biosensing devices due to their unique optical properties tailored by surface plasmon resonance (SPR) coupling. This project is focused on the target of developing new microarray biosensing chips with high throughput, easy integration and ultra sensitivity. SPR is excited by sputtering deposition of metallic thin film on a designed pattern of the periodical nanostructures. The overall proposed research is divided into four interconnected thrusts. The first thrust is to design the periodical structure using RCWA software to calculate the plasmonic properties. The second thrust is to characterize SPR responses using a home made SPR-SPFS set-up and summarize the influence of the parameters of pitch, depth and thickness on SPR coupling efficiency. The third thrust is to construct new biosensing microarray devices through adjusting the optical response, and to achieve an enhanced fluorescence or label free visual detection. The fourth thrust is to develop a new kind of nanoimprint technique including pattern designing, material screening and imprinting for periodical nanostructure. These research efforts will be used to enable the combination of basic research with a real application development. Through the four-year effort of "Develop-Disse

英文关键词: Biosensing;Plasmonic Periodical Nanostructure;Catalyst;Metal Nanoparticles;

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
数字建筑发展白皮书(2022年)
专知会员服务
41+阅读 · 2022年4月1日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
重磅!数字孪生技术应用白皮书(2021)
专知会员服务
256+阅读 · 2021年12月8日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
28+阅读 · 2021年8月2日
把DNA换成RNA,有望创造强大、可持续的生物计算机
大数据文摘
0+阅读 · 2022年3月31日
微信AI的高性能检测器,让识图更精准
微信AI
0+阅读 · 2021年4月22日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
15+阅读 · 2020年2月6日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
数字建筑发展白皮书(2022年)
专知会员服务
41+阅读 · 2022年4月1日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
重磅!数字孪生技术应用白皮书(2021)
专知会员服务
256+阅读 · 2021年12月8日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
28+阅读 · 2021年8月2日
相关基金
微信扫码咨询专知VIP会员