项目名称: 动态多目标协同微粒群优化及其在数据流聚类中的应用

项目编号: No.61473299

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 其他

项目作者: 张勇

作者单位: 中国矿业大学

项目金额: 80万元

中文摘要: 目标函数多且随环境动态变化的优化问题是非常普遍的。尽管已有进化优化方法可以提高种群跟踪时变Pareto最优解集的能力,但是,这些方法固有的缺陷,使其难以有效处理环境变化不规律、变量维数高的复杂动态多目标优化问题。本项目利用协同进化技术,研究用于动态多目标优化问题的合作型协同微粒群优化理论、方法及其应用。通过研究,拟建立基于环境敏感程度的变量空间划分理论,给出基于完整解集的子种群个体优劣比较策略,提出用于问题求解的合作型协同多目标微粒群优化算法,并将其用于数据流聚类问题。研究成果将为动态多目标优化问题提供一种新的求解途径,提高算法对环境变化的响应速度和求解质量。本项目是自动化、计算机与数学等学科有机交叉、新颖且富有挑战性的研究方向,有非常明确的产业需求,因此,具有重要的理论意义和实际应用价值。

中文关键词: 粒子群优化;协同进化;多目标;动态优化

英文摘要: The multi-objective optimization problems in dynamic environment widely exist in our real life. Although the existing evolutionary algorithms can improve the capability of population to tracke time-varying Pareto optimal set,it is difficult to apply those algorithms in more complicated problems, which have irregular environment and high dimension variables,because of their inherent disadvantages. Based on the co-evolutionary technology,this project studies the cooperative co-evolutionary particle swarm optimization theory and method for solving complicated dynamic multi-objective optimization problems, and their applications. Based on this project, we plan to establish a new dividing theory of variable space based on environment sensitivity, give an individual comparison strategy based on whole solution set, propose a cooperative co-evolutionary multi-objective particle swarm optimization algorithm for solving the above problems, and apply the proposed theory and algorithm in data stream clusering problems. The results of this project should produce a novel solving method for dynamic multi-objective optimization problems,and improve the response speed of algorithm,as well as the quality of solutions. This project is a novel and challenging research orientation with obvious social requirement,which combines automatization,computer science and mathematics.Therefore,it has important theoretical and actual value.

英文关键词: Particle swarm optimization;Co-evolutionary algorithm;Multi-objective;Dynamic optimization

成为VIP会员查看完整内容
0

相关内容

机器学习必读新书-《凸优化算法原理详解》,334页pdf
专知会员服务
96+阅读 · 2022年1月4日
【博士论文】集群系统中的网络流调度
专知会员服务
43+阅读 · 2021年12月7日
专知会员服务
55+阅读 · 2021年9月18日
专知会员服务
34+阅读 · 2021年8月1日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
24+阅读 · 2021年4月21日
【WWW2021】用优化框架解释和统一图神经网络
专知会员服务
44+阅读 · 2021年2月1日
专知会员服务
200+阅读 · 2020年9月1日
交替方向乘子法(ADMM)算法原理详解
PaperWeekly
3+阅读 · 2022年1月21日
基于多目标优化的推荐系统综述
机器学习与推荐算法
6+阅读 · 2021年12月27日
NeurIPS 2021 | 微软亚洲研究院机器学习领域最新研究一览
微软研究院AI头条
0+阅读 · 2021年12月8日
【博士论文】集群系统中的网络流调度
专知
4+阅读 · 2021年12月7日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
基于数据的分布式鲁棒优化算法及其应用【附PPT与视频资料】
人工智能前沿讲习班
26+阅读 · 2018年12月13日
干货 | 目标识别算法的进展
计算机视觉战队
17+阅读 · 2017年6月29日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年5月3日
小贴士
相关VIP内容
机器学习必读新书-《凸优化算法原理详解》,334页pdf
专知会员服务
96+阅读 · 2022年1月4日
【博士论文】集群系统中的网络流调度
专知会员服务
43+阅读 · 2021年12月7日
专知会员服务
55+阅读 · 2021年9月18日
专知会员服务
34+阅读 · 2021年8月1日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
24+阅读 · 2021年4月21日
【WWW2021】用优化框架解释和统一图神经网络
专知会员服务
44+阅读 · 2021年2月1日
专知会员服务
200+阅读 · 2020年9月1日
相关资讯
交替方向乘子法(ADMM)算法原理详解
PaperWeekly
3+阅读 · 2022年1月21日
基于多目标优化的推荐系统综述
机器学习与推荐算法
6+阅读 · 2021年12月27日
NeurIPS 2021 | 微软亚洲研究院机器学习领域最新研究一览
微软研究院AI头条
0+阅读 · 2021年12月8日
【博士论文】集群系统中的网络流调度
专知
4+阅读 · 2021年12月7日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
基于数据的分布式鲁棒优化算法及其应用【附PPT与视频资料】
人工智能前沿讲习班
26+阅读 · 2018年12月13日
干货 | 目标识别算法的进展
计算机视觉战队
17+阅读 · 2017年6月29日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员