项目名称: 红荧烯多晶薄膜的形态结构研究

项目编号: No.51303171

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 王彤

作者单位: 中国科学院长春应用化学研究所

项目金额: 25万元

中文摘要: 红荧烯(Rubrene)是目前报道的载流子迁移率最高的一类有机半导体材料,然而,由于薄膜结晶性差导致红荧烯薄膜晶体管难以获得高迁移率。采用常规的真空沉积方法 在非晶衬底上制备的红荧烯薄膜,一般呈现非晶状态,载流子迁移率非常低(10-6 cm2/Vs),没有表现出该材料结晶态时具有的高功能性质,大大限制了该材料在薄膜器件方面的实际应用。弱外延生长(WEG)是制备高有序有机半导体薄膜的一种有效方法,是在非晶衬底上先制备一层高有序的有机分子超薄膜诱导层,然后再生长有机半导体多晶薄膜,有机半导体晶体与诱导层之间会形成一定的外延关系。本项目拟通过WEG方法在非晶衬底上实现高品质红荧烯多晶薄膜的制备,并系统开展红荧烯弱外延生长薄膜的形态结构与功能关系研究。

中文关键词: 红荧烯;弱外延生长;高迁移率;多晶薄膜;

英文摘要: Rubrene holds the record for the highest carrier mobility of organic semiconductor materials. However, it has been found difficult to achieve high carrier mobility in thin film transistors of rubrene because of poor crystallinity. Rubrene films prepared by conventional vacuum deposition method on the amorphous substrate, generally shows the amorphous state.The carrier mobility in amorphous films is very low (10-6 cm2/Vs),does not show high functional characteristics of rubrene crystalline material, limits the practical application of the materials in thin film devices greatly. Weak epitaxial growth (WEG) is an effective method for the preparation of high ordered organic semiconductor thin film. At first, a layer of high ordered ultra-thin films of organic molecules inducing layer is prepared in an amorphous substrate, and then the polycrystalline thin film of organic semiconductor grow on the surface of the inducing layer. There is formed some epitaxial relationship between organic semiconductor crystal and inducing layer. The project is planned to fabricate the high-quality rubrene polycrystalline films on amorphous substrates by WEG method and carry out researching the relationship between morphology and function of the rubrene weak epitaxial growth film systematically.

英文关键词: Rubrene;Weak epitaxial growth;High mobility;Polycrystalline thin films;

成为VIP会员查看完整内容
0

相关内容

【2022新书】熵和多样性公理化方法,452页pdf
专知会员服务
43+阅读 · 2022年5月11日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
23+阅读 · 2021年8月1日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
【耶鲁】数据结构与编程技术,656页pdf
专知会员服务
55+阅读 · 2021年4月26日
【2020新书】数据结构与数据表示指南,112页pdf
专知会员服务
82+阅读 · 2020年10月6日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
2021太阳电池中国最高转换效率发布
光伏专委会CPVS
0+阅读 · 2022年4月21日
从带内到带外——智能系统的脆弱性体系演变
中国计算机学会
6+阅读 · 2022年3月23日
【博士论文】分形计算系统
专知
2+阅读 · 2021年12月9日
手把手教你,19步从石头里抠出一块CPU
新智元
0+阅读 · 2021年11月16日
已删除
将门创投
11+阅读 · 2019年7月4日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
小贴士
相关主题
相关VIP内容
【2022新书】熵和多样性公理化方法,452页pdf
专知会员服务
43+阅读 · 2022年5月11日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
23+阅读 · 2021年8月1日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
【耶鲁】数据结构与编程技术,656页pdf
专知会员服务
55+阅读 · 2021年4月26日
【2020新书】数据结构与数据表示指南,112页pdf
专知会员服务
82+阅读 · 2020年10月6日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
相关资讯
2021太阳电池中国最高转换效率发布
光伏专委会CPVS
0+阅读 · 2022年4月21日
从带内到带外——智能系统的脆弱性体系演变
中国计算机学会
6+阅读 · 2022年3月23日
【博士论文】分形计算系统
专知
2+阅读 · 2021年12月9日
手把手教你,19步从石头里抠出一块CPU
新智元
0+阅读 · 2021年11月16日
已删除
将门创投
11+阅读 · 2019年7月4日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员