项目名称: 具有可见光响应的ZnO基复合纳米阵列的电化学制备及光电化学制氢性能

项目编号: No.21306030

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 化学工业

项目作者: 刘兆清

作者单位: 广州大学

项目金额: 25万元

中文摘要: 光电化学制氢是太阳能产氢领域的前沿和热点之一。本项目采用电化学合成技术,在低温条件下,以ZnO纳米线阵列为基,可控制备具有可见光响应的高活性的ZnO基复合纳米阵列光电化学制氢电极材料。通过采用 SEM、TEM、SPM、XRD、BET、XPS、PL、UV-Vis等仪器详细分析复合纳米阵列结构的组成、形貌和晶相结构,研究实验条件对阵列结构形貌、组成和光响应活性的影响规律;探索不同纳米阵列结构的生长机理;揭示光电极材料的结构特征与性能变化,最终实现组成和结构可控。对所合成的纳米阵列结构材料进行系统的光电化学分解水制氢性能的评价,分析光电极在可见光下光电化学分解水产氢的全面数据,优化具有最佳活性的复合纳米阵列结构光电极的制备工艺,深入理解其组成、含量、结构与光响应活性之间的联系,从而得到具有可见光响应的新型光电极材料,促进复合半导体化合物材料在太阳能产氢领域的应用。

中文关键词: 电化学制备;氧化锌基;复合纳米阵列;光电化学制氢;

英文摘要: Photoelectrochemical hydrogen production through water splitting is of great importance for its potensial application in converting solar energy into chemical energy. Herein visible light-driven ZnO-based nano-arrays structures would have been synthesized in large quantities by a facile electrochemical method at low temperature and the thickness of composites'shell can be controlled by change the deposition parameters, which often exhibit novel physical and chemical properties. The as-prepared structures and optical properties would be characterized by scanning electron microscopy (SEM),transmission electron microscopy (TEM), scanning probe microscopy (SPM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Accelerated surface area and porosimetry system (ASAP 2020M), Ultraviolet visible spectrophotometry (UV-vis) and Fluorescence life time and steady state spectrometer (PL).The possible formation process and growth mechanisms for such ZnO-based nanosructures would have been proposed. The photoelectrochemical water splitting would be evaluated under visible-light irradiation.The electrochemical method should provide new insight into the fabrication of composite nanostructures and other photoelectrochemical materials.We believe that the ZnO-based nano-arrays composites would be of great interest i

英文关键词: Electrochemical synthesis;ZnO-based;Composite nanoarrays;Photoelectrochemical water splitting;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
28+阅读 · 2021年10月6日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
33+阅读 · 2021年5月7日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
20+阅读 · 2020年11月6日
专知会员服务
29+阅读 · 2020年8月8日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
57+阅读 · 2021年5月3日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
专知会员服务
28+阅读 · 2021年10月6日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
33+阅读 · 2021年5月7日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
20+阅读 · 2020年11月6日
专知会员服务
29+阅读 · 2020年8月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员