项目名称: 基于纳米金催化甲酸分解的高选择性低温制氢反应研究

项目编号: No.21273044

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 曹勇

作者单位: 复旦大学

项目金额: 90万元

中文摘要: 甲酸是重要的化学中间体和可再生能源载体,其低温催化选择分解是新近发现的一类在微型氢燃料电池领域具有重要应用前景的供氢反应体系,较传统甲醇重整在条件温和及制氢选择性高等方面独具优势。基于我们有关耐酸氧化锆负载纳米金在水热条件下催化高浓度甲酸选择分解制氢的最新发现,针对现有多相贵金属催化液相甲酸分解制氢体系中存在的反应效率和选择性偏低以及稳定性严重不足等关键基础问题,本项目以探索和开发甲酸低温制氢新工艺为目标,筛选并创制高性能甲酸分解纳米金催化剂;结合多种理化表征手段和反应评价,系统认识甲酸选择分解反应的关键因素(载体特性、纳米金尺寸/微结构、溶剂等)对活性、选择性和稳定性的影响;发现并确立可在低于60 oC 条件下实现甲酸持续选择分解的新型高效洁净制氢体系,明确相关反应与催化剂组成和结构的关系,揭示相关催化作用机理,拓展并完善相关理念,为发展相应的便携式制氢工艺提供基础数据、模型和理论指导。

中文关键词: 甲酸;制氢;催化;活化;化学储氢

英文摘要: Formic acid (FA), an important chemical intermediate, has recently been identified as a promising renewable energy carrier suitable for hydrogen-powered micro fuel cells. Catalytic decomposition of FA offers great advantages over conventional methanol steam reforming that can produce high purity hydrogen (H2) in terms of excellent selectivity and very mild conditions. Based on our latest discovery that gold nanoparticles (NPs) highly dispersed on acid-tolerant zirconia can catalyze selective decomposition of concentrated aqueous FA to produce H2 under highly acidic hydrothermal conditions, the primary objective of the current proposal is to explore and develop new advanced processes that can deliver selective FA decomposition at low temperature by screening and fabricating new generation of Au-based FA decomposition catalysts, with the aim to overcome the inherent low efficiency, limited selectivity and poor stability associated with the state-of- the-art heterogeneous nobel metal-based catalyst systems. To gain an insight into the key aspects (nature of the support, size and micro-structure of Au NPs, solvent etc.) that influence the activity, selectivity and stability of the Au catalysts, special efforts will be focused on an extensive physicochemical characterization of the Au-based catalysts active and selec

英文关键词: formic acid;hydrogen production;catalysis;activation;chemical hydrogen storage

成为VIP会员查看完整内容
0

相关内容

严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
62+阅读 · 2021年10月14日
专知会员服务
42+阅读 · 2021年9月7日
【2021新书】Python深度学习,316页pdf
专知会员服务
250+阅读 · 2021年5月21日
专知会员服务
39+阅读 · 2021年5月12日
KDD20 | AM-GCN:自适应多通道图卷积网络
专知会员服务
39+阅读 · 2020年8月26日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关主题
相关VIP内容
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
62+阅读 · 2021年10月14日
专知会员服务
42+阅读 · 2021年9月7日
【2021新书】Python深度学习,316页pdf
专知会员服务
250+阅读 · 2021年5月21日
专知会员服务
39+阅读 · 2021年5月12日
KDD20 | AM-GCN:自适应多通道图卷积网络
专知会员服务
39+阅读 · 2020年8月26日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员