项目名称: 半导体表面非磁性原子修饰诱导磁性及其调控

项目编号: No.11504332

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 牛春要

作者单位: 郑州大学

项目金额: 20万元

中文摘要: 从原子分子层面上对半导体表面修饰改性是当今凝聚态物理研究的前沿领域之一。利用非磁性原子修饰诱导、调控半导体表面磁性有序结构不仅有着重要的科学研究意义,而且在电子学、自旋电子学、高密度存储等方面有着广泛的应用前景。本项目应用第一性原理计算方法系统地研究非磁性原子吸附、掺杂诱导及调控半导体表面磁性的机理。重点研究吸附和掺杂元素种类、浓度、构型等因素对诱导半导体表面磁性的影响, 探讨非磁性原子诱导及调控半导体表面磁性的一般规律,揭示其微观机理, 以便从原子层次设计性能稳定、性质丰富的半导体表面磁性结构,为相关的物理实验和实际应用器件提供理论指导。

中文关键词: 半导体表面;非磁性原子;吸附;掺杂;磁性

英文摘要: The decoration of semiconductor surfaces in atomic scale is one of the fronts in the condensed matter physics. Using non-magnetic atoms to induce and adjust magnetic properties on semiconductors surfaces is not only intriguing and challenging from a fundamental scientific point of view but also very important for the potential applications in nanoelectronics, spinelectronics, as well as ultradense memory devices. Therefore, in this project, based on density functional theory, we will employ the first-principles methods to explore the physical mechanism of the magnetic properties induced and adjusted by the non-magnetic atoms. We will focus on the influences of the adsorbed and doped atomic types, coverage, configurations on magnetic properties. Through these investigations, we will make out the related microscopic mechanisms and find out the general rule to design the magnetic structures with various properties on semiconductor surfaces. We expect that this project will provide an effective theoretical guidance to the related physical experiments and device applications.

英文关键词: Semiconductor surfaces;Non-magnetic atoms;Adsorption;Doping;Magnetic properties

成为VIP会员查看完整内容
0

相关内容

专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
209+阅读 · 2021年8月2日
【经典书】机器学习统计学,476页pdf
专知会员服务
118+阅读 · 2021年7月19日
专知会员服务
65+阅读 · 2021年7月4日
【2021新书】《用正确的方式学Python》,456页pdf
专知会员服务
76+阅读 · 2021年6月9日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【经典书】操作系统导论,687页pdf
专知会员服务
170+阅读 · 2020年10月28日
【电子书】Flutter实战305页PDF免费下载
专知会员服务
20+阅读 · 2019年11月7日
是什么原因让你不想换手机?
ZEALER订阅号
0+阅读 · 2022年2月12日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
SkiQL: A Unified Schema Query Language
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
The Importance of Credo in Multiagent Learning
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
209+阅读 · 2021年8月2日
【经典书】机器学习统计学,476页pdf
专知会员服务
118+阅读 · 2021年7月19日
专知会员服务
65+阅读 · 2021年7月4日
【2021新书】《用正确的方式学Python》,456页pdf
专知会员服务
76+阅读 · 2021年6月9日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【经典书】操作系统导论,687页pdf
专知会员服务
170+阅读 · 2020年10月28日
【电子书】Flutter实战305页PDF免费下载
专知会员服务
20+阅读 · 2019年11月7日
相关资讯
是什么原因让你不想换手机?
ZEALER订阅号
0+阅读 · 2022年2月12日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员