项目名称: 区域碳生产率的时空间演化及其多变量驱动因素研究——以广东省为例
项目编号: No.41501144
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 天文学、地球科学
项目作者: 王长建
作者单位: 广州地理研究所
项目金额: 21万元
中文摘要: 低碳经济的本质在于提高“碳生产率”,从时间和空间角度研究碳生产率,对于提升区域碳生产率和发展低碳经济具有重要的实践价值。本项目在测算广东省区域碳生产率的基础上,利用基于探索性空间分析方法(ESDA)的“时空自相关分析技术”研究区域碳生产率的时空演化。进而整合变量关系分析与时空格局分析的研究方法,构建多变量驱动的影响要素模型和基于非参数分位数回归的多变量关系模型,分析区域碳生产率时空演化的控制因素并解释其成因,揭示时空关联视角下广东省区域碳生产率的多变量驱动影响因素。最后提出各个地级市提升碳生产率的优化对策,为广东省的低碳可持续发展提供基础理论支撑与现实决策依据。
中文关键词: 碳生产率;时空演化;多变量驱动因素;低碳经济;广东省
英文摘要: How to improve the carbon productivity is the nature of low-carbon economy. Researching carbon productivity from the spatio-temporal perspective has important practical value on improving regional carbon productivity and developing regional low-carbon economy. This project firstly measured the regional carbon productivity in Guangdong province including 21 cities. Then, spatio-temporal autocorrelation analysis based on the exploratory spatial data analysis (ESDA) was applied to analyze the spatio-temporal evolution of carbon productivity in Guangdong province. Based on the background conditions of regional natural resources and socio-economic development level, this project built a multivariate influencing factors model to reveal the influencing mechanism of carbon productivity during the process of spatio-temporal evolution. After that, multivariate relationship model based on quantile regression method with the integration of the variable relationship analysis and spatio-temporal pattern analysis, was applied to uncover the controlling factors influencing the spatio-temporal evolution of carbon productivity and explain the causes. Finally, this project will summarize and discuss the optimization countermeasures for promoting the regional carbon productivity at the prefecture-level, providing the basic theoretical and practical supports for the low-carbon sustainable development in Guangdong province. Meanwhile, this project will provide methodology reference for carbon productivity research in other regions.
英文关键词: carbon productivity;spatio-temporal evolution;multivariate influencing factors;low-carbon economy;Guangdong province