项目名称: 层状化合物的配位改性:多维杂化功能材料的制备及其储能特性研究

项目编号: No.21304053

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 刘一涛

作者单位: 清华大学

项目金额: 25万元

中文摘要: 层状化合物构成了一个概念上全新的大家族。这些二维晶体均具有极大的比表面积,以及非同寻常的电学、力学和热学性能,因此是催化、储能、纳米电子器件以及复合材料等领域出类拔萃的竞争者。由于层状化合物的化学惰性,如何赋予其官能性从而对其进行深度加工是一个巨大而迷人的挑战。考虑到它们丰富的配位原子(S、O和N),我们拟采用高分子配体对其进行配位改性从而制备基于层状化合物的多维杂化功能材料。本项目申请拟采用实验和模拟的手段系统性地评估不同价态金属离子对于层状化合物的配位能力,从而优化配位条件并建立反应动力学;利用高分子配体来组装基于层状化合物和金属纳米粒子的零维/二维杂化结构,并考察其电化学性能;探索包含碳纳米管和层状化合物的一维/二维配位体系,利用其协同效应制备高容量、长寿命的锂离子电池负极材料;通过配位实现聚合物电解质(如PEO、PMMA等)和层状化合物的复合材料,从而制备自站立的薄膜电极。

中文关键词: 层状化合物;配位;高分子配体;储能;多维杂化功能材料

英文摘要: Layered compounds, including transition metal dichalcogenides, transition metal oxides and h-BN, belong to a huge, conceptually new family. These 2D crystals are featured by extremely large specific surface area, as well as extraordinary electronic, mechanical and thermal properties, thus serving as superior candidates in such fields as catalysis, energy storage, next-generation nanoelectronics and composites. The chemical inertness of layered compounds, however, makes their chemical modification a huge yet fascinating challenge. Considering their abundant coordination atoms (S, O and N), we envision a universal strategy for fabricating multi-dimensional functional nanohybrids based on layered compounds through metal ion coordination by using polymeric ligands. This project will systematically evaluate the coordination abilities of different metal ions to layered compounds, and propose the coordination kinetics of these supramolecular systems. Metal nanoparticles will be endowed with coordination atoms through covalent modification with polymer ligands, which will then be assembled on layered compounds to investigate their electrochemical performance. Moreover, functional nanohybrids based on carbon nanotubes and layered compounds will be explored through metal ion coordination, whose synergistic effects will fa

英文关键词: Layered compounds;Coordination;Polymeric ligands;Energy storage;Multi-dimensional functional nanohybrids

成为VIP会员查看完整内容
0

相关内容

专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
《碳中和愿景下储能产业发展白皮书》27页ppt
专知会员服务
65+阅读 · 2021年3月30日
机器直觉
专知会员服务
26+阅读 · 2020年11月22日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
23+阅读 · 2020年2月23日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
28+阅读 · 2021年10月1日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
《碳中和愿景下储能产业发展白皮书》27页ppt
专知会员服务
65+阅读 · 2021年3月30日
机器直觉
专知会员服务
26+阅读 · 2020年11月22日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
23+阅读 · 2020年2月23日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员