项目名称: 面向产品评论的评价对象层次结构分析与极性识别

项目编号: No.61300113

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 赵妍妍

作者单位: 哈尔滨工业大学

项目金额: 23万元

中文摘要: 评价对象的抽取与极性识别研究是面向产品评论的情感倾向性分析领域的重要研究任务。然而对于评价对象的抽取任务,现有研究忽视了评价对象的层次性和完整性,为精准的情感倾向性分析应用带来了很大的困扰;对于评价对象的极性识别任务,现有研究仅关注含有评价词语等明显极性特征的显式评价,忽略了极性特征不明显的隐式评价,造成部分评价对象的极性丢失。基于此,本项目提出评价对象层次结构分析的研究任务,表现为产品品牌、属性和子属性三个层次组成的层次结构,挖掘评价对象内部完整的层次关系。同时,将评价对象对应的评价文本分为显式评价和隐式评价,分别进行极性算法研究。具体内容有:评价对象层次结构的无指导识别算法;面向显式评价的基于句子压缩的评价搭配抽取算法;面向隐式评价的基于图的篇章内外特征相融合的极性识别算法。本项目旨在深入研究相关算法,更精确、有深度且全面的挖掘评论中的情感信息,为情感文摘、电子商务等应用提供技术支持。

中文关键词: 情感倾向性分析;评价对象;层次结构;极性识别;隐式评价

英文摘要: Target extraction and polarity recognition is an important research task in sentiment analysis. However, for the target extraction task, the existing research work neglects the hierarchy and completeness of the target, which brings many difficulties for the accurate sentiment analysis applications. And for the polarity recognition task, the existing research just focuses on the obvious comments that have obvious polarity features and neglects the unobvious comments, which leads to the polarity loss for some targets. To solve these problems, the task of hierarchical structure analysis of target is proposed, in which the hierarchical structure can be described by three layers: product brand, attribute and sub-attribute. This task aims to mine the complete relationships inside the target. Besides, the comments of the target can be classified into two parts: obvious comments and unobvious comments according to the polarity features, the novel algorithms are studied for them separately. The main contents are: the unsupervised method for target hierarchical structure analysis; obvious comment oriented sentence compression based method for appraisal collocation extraction; the unobvious comment oriented graph model based method for polarity recognition. The project aims to do deep research on related tasks and mine the

英文关键词: Sentiment analysis;target;hierarchical structure;polarity recognition;unobvious comment

成为VIP会员查看完整内容
0

相关内容

【WWW2022】TaxoEnrich:通过结构语义表示的自监督分类法补全
专知会员服务
51+阅读 · 2021年8月13日
专知会员服务
56+阅读 · 2021年4月20日
专知会员服务
17+阅读 · 2021年2月17日
【CCL2020】基于深度学习的实体关系抽取研究综述
专知会员服务
53+阅读 · 2020年11月4日
实体关系抽取方法研究综述
专知会员服务
178+阅读 · 2020年7月19日
【情感分析】情感分析研究的新视野
深度学习自然语言处理
15+阅读 · 2020年3月10日
面向新闻媒体的命名实体识别技术
PaperWeekly
18+阅读 · 2019年4月17日
阿里健康夺冠中文电子病历实体识别评测任务
AI掘金志
40+阅读 · 2018年8月17日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
【知识图谱】中文知识图谱构建方法研究
产业智能官
99+阅读 · 2017年10月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
14+阅读 · 2018年5月15日
小贴士
相关资讯
【情感分析】情感分析研究的新视野
深度学习自然语言处理
15+阅读 · 2020年3月10日
面向新闻媒体的命名实体识别技术
PaperWeekly
18+阅读 · 2019年4月17日
阿里健康夺冠中文电子病历实体识别评测任务
AI掘金志
40+阅读 · 2018年8月17日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
【知识图谱】中文知识图谱构建方法研究
产业智能官
99+阅读 · 2017年10月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员