项目名称: 基于执行反馈的多核软件动态分析方法研究
项目编号: No.61300017
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 胡燕
作者单位: 大连理工大学
项目金额: 23万元
中文摘要: 多核软件分析与测试是软件工程研究领域的热点问题。目前,该领域研究存在一系列挑战:动态分析方法所依赖的动态插桩方法无法适应多核软件动态分析的要求;缺乏并发bug的统一特征描述,影响并发bug的理解;缺乏对多核软件执行空间的高效搜索算法等。 针对以上挑战,本课题基于多核软件运行时数据及其中所蕴藏的能够精确分析软件行为的特征数据,研究:(1)如何建立高效的执行反馈机制,作为运行时数据生成的基础引擎;(2)如何在多核软件运行时数据集中有效提取特征数据;(3)如何设计基于特征的软件执行空间搜索算法,驱动反馈体系不断更新完善运行时数据集。上述三方面研究的结果将形成一个完整的反馈体系,为多核软件动态分析提供有力支撑。 课题的成功实施,将形成一套高效准确的多核软件动态分析方法。同时形成的运行时数据集将能够帮助具体分析多核软件中异常并发行为,有利于提高多核软件系统测试的效果,缩短多核软件的研发周期。
中文关键词: 并发软件;运行时数据;特征分析;移动应用分析;
英文摘要: Analysis and testing of multicore software is one of the hot topics in software engineering. After a thorogh study of current dynamic analyses on multicore softare, we found that they have three disadvantages:(1) current dynamic instrumentation techniques are not efficient enough to serve the more demanding multicore dynamic analysis;(2)current dynamic analyses don't have a uniform description to concurrency bugs in multicore software, and this causes some difficulties in the understanding of concurrency bugs; (3)there are no guided schedule search algorithms specially designed for dynamic analysis of multicore software. Those three shortcommings make existing dynamic analyses from applying to large-scale multicore software. To change this situation, we plan to design a novel execution-feedback based dynamic analysis for multicore software. Our research is based on the fact that valuable feature information is hidden in the runtime data of multicore software. We proposed a three step research plan to fulfil our research goal:(1) first, we build a highly efficient execution feedback mechanism, which will serve as the basic execution engine for runtime data generation; (2)then, we will design a method to extract bug features from the runtime data set; (3)we will design a feature directed search algorithm, to help
英文关键词: Concurrent Software;Runtime Data;Feature Extraction;Mobile Application Analysis;