项目名称: 高吸光率三维电极-n-p结量子点太阳电池的制备及研究

项目编号: No.21201047

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 无机化学

项目作者: 利明

作者单位: 桂林理工大学

项目金额: 23万元

中文摘要: 量子点太阳电池理论效率高达42%,并且具有制备原料丰富、制作简单、成本低廉的优点,是近年最受关注的薄膜太阳电池之一。量子点太阳电池目前效率不高,其主要的问题在于制备量子点过程中在颗粒表面起钝化作用的有机分子链较长,影响了光生电子的传输。同时,光生电子扩散长度的限制使得电池的厚度不能达到微米级,吸光层的厚度低导致太阳光的吸收利用率不高。光生电子的定向传输性也是影响电子收集的重要因素。针对这些问题,本课题研究采用单原子层包裹量子点的方法提高量子点中电子的迁移率,并且研究制备具高透光性,高导电性的纳米线材料作为电池的电极,形成三维电极-n-p结的体异质结构,保证在提高电池厚度的同时电子能得到有效的收集。设计电池结构,利用粒径不同的量子点材料,制备具有"量子漏斗"效应的电池,加强电子的定向传输性,提高电子的收集效率,从而提高电池的光电转换效率。

中文关键词: 量子点;核壳纳米材料;链接剂交换;薄膜太阳电池;两相法

英文摘要: Solar cells based on solution-processed semiconductor nanoparticles - colloidal quantum dots(CQDs) - have received much attention because of their high theoretical efficiency reaching 42% and low production cost. At present, the efficiency of CQD solar cells is not satisfying mainly due to the following three factors: (i) Organic ligands used to passivate the surface of the semiconductor nanoparticles produce insulating barriers between CQDs that militate against efficient carrier transport when processed into films; (ii) Limited by the exciton diffusion lengthes, the thickness of the cell can't reach micron level which results in the low solar absorption; (iii) Charge carriers photogenerated in the quasi-neutral region of the cell fail to reach the edge of the depletion region before they recombine. Here we establish an atomic ligand strategy that makes use of monovalent anions to enhance electronic transport and passivate surface. The three dimension transparent nanowires materials with high conduction are synthesized to use as electrodes for collecting photogenerated electrons. This three dimension electrode-n-p heterojunction structure makes sure photogenerated electrons can be collected efficiently while increasing the cell thickness. A quantum funnel constructed with different size quantum dots films is in

英文关键词: Quantum dot;Core-shell nanoparticle;Ligand exchange;Thin film solar cell;Two phase method

成为VIP会员查看完整内容
0

相关内容

CVPR2022 | Sparse Transformer刷新点云目标检测的SOTA
专知会员服务
24+阅读 · 2022年3月9日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
【CVPR2020】时序分组注意力视频超分
专知会员服务
30+阅读 · 2020年7月1日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
CVPR2022 | Sparse Transformer刷新点云目标检测的SOTA
专知会员服务
24+阅读 · 2022年3月9日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
【CVPR2020】时序分组注意力视频超分
专知会员服务
30+阅读 · 2020年7月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员