项目名称: 基于超冗余串并联机构的变刚度仿生摆动推进装置机理及其关键技术研究

项目编号: No.51275127

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 机械、仪表工业

项目作者: 姜洪洲

作者单位: 哈尔滨工业大学

项目金额: 80万元

中文摘要: 鱼体力学特性实验研究表明,鱼体肌肉系统可通过改变刚度来提高尾鳍摆动推进效率。受此启发,本申请以金枪鱼为仿生对象,借鉴"冗余驱动串并联机构可以通过规划其内力改变刚度"这一机构学原理,提出了基于超冗余串并联机构的变刚度仿生摆动推进装置机理及其关键技术研究方案,以期借助刚度调整来改进摆动推进装置的快速性、稳定性和推进效率。研究中,拟解决摆动推进装置刚度调整对推进效率的影响、摆动推进装置柔顺中心对推进效率的影响、动态各向异性设计与推进机构稳定性的匹配关系等一系列问题,从而揭示基于超冗余串并联机构的变刚度仿生摆动推进机构的推进机理。本研究以流体环境下的模态分析为基础,采用模态空间控制方法解决以上问题。特别是,拟利用力冗余驱动系统中所特有的零特征值模态进行内力调整实现主动刚度控制。这是为开发高效、快速、稳定的摆动推进器所进行的理论基础与实践方面的有益探索。

中文关键词: 串并联机构;变刚度;摆动推进;仿生;

英文摘要: Previous biological experiments have showed that fish use their muscles to stiffen their bodies to improve the efficiency of oscillatory propulsion of their caudal fins. Inspired by this biological evidence, and considering the principle that the stiffness of a redundant serial-parallel mechanism can be tuned by adjusting internal forces, we propose a biomimetic oscillatory propulsor with variable stiffness using hyper redundant serial-parallel mechanisms to mimic a tuna, and expect to improve its swimming speed, stability and efficiency by tuning stiffness. In this research, we try to explore the matching relationship between stiffness, compliance center, stability, dynamic anisotropy and propulsive efficiency, and reveal the propulsion mechanism of the oscillatory propulsor with variable stiffness. On the basis of modal analysis,considering fluid-structure interaction, we will use the theories of modal space control to solve the above problems. In particular, in order to implement the antagonist stiffness control of the propulsor, we will use the modes of the redundant actuating system with respect to the Eigen values with zeros to regulate internal forces. This is a valuable theoretical and practical exploration for the development of oscillatory propulsor with high quality of swimming speed, stability, and e

英文关键词: serial-parallel mechanism;variable stiffness;oscillatory propulsor;biomimetic;

成为VIP会员查看完整内容
0

相关内容

工业人工智能驱动的流程工业智能制造
专知会员服务
102+阅读 · 2022年3月9日
专知会员服务
16+阅读 · 2021年10月4日
专知会员服务
23+阅读 · 2021年9月20日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
107+阅读 · 2020年10月31日
人机对抗智能技术
专知会员服务
203+阅读 · 2020年5月3日
造卫星的技术抢滩自动驾驶市场,你准备好了吗?
创业邦杂志
0+阅读 · 2022年4月6日
无人机集群对抗研究的关键问题
无人机
56+阅读 · 2018年9月16日
【无人机】无人机的自主与智能控制
产业智能官
48+阅读 · 2017年11月27日
李克强:智能车辆运动控制研究综述
厚势
21+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
小贴士
相关主题
相关VIP内容
工业人工智能驱动的流程工业智能制造
专知会员服务
102+阅读 · 2022年3月9日
专知会员服务
16+阅读 · 2021年10月4日
专知会员服务
23+阅读 · 2021年9月20日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
107+阅读 · 2020年10月31日
人机对抗智能技术
专知会员服务
203+阅读 · 2020年5月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员