项目名称: 电化学合成铂基介孔纳米薄膜的新原理和新方法及其电催化性能调控

项目编号: No.21273218

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 王亮

作者单位: 中国科学院长春应用化学研究所

项目金额: 80万元

中文摘要: 铂基介孔纳米薄膜具有三维多孔金属框架、高比表面积和良好的渗透性,是优异的低铂催化剂,目前仅能通过基于溶致液晶模板的电化学合成方法制备。现有的电化学合成方法操控难度较大,且溶致液晶模板试剂价格极其昂贵,因而难以用于扩大合成。本项目针对这一瓶颈与难题,将建立电化学合成铂基介孔纳米薄膜的新原理和新方法。原创性地利用嵌段共聚物胶束在固液界面自组装形成软模板,采用电化学沉积法制备铂基介孔纳米薄膜;创新性地利用膨胀理念、双模板合成理念对介孔薄膜的孔结构进行调控和可控生长;揭示三维多尺度下纳米孔结构单元之间的界面效应和耦合效应,对介孔薄膜的孔结构进行优化设计和催化性能调控;利用建立的合成新原理和新方法,结构和排列方式可控地制备微型燃料电池用铂基介孔纳米薄膜芯片电极。本项目研究可解决铂基介孔纳米薄膜难以扩大合成和应用这一迫切需要解决的关键问题,并为铂基介孔纳米薄膜芯片电极的可控设计和制备提供关键技术。

中文关键词: 铂基电催化剂;纳米结构;介孔结构;甲醇氧化反应;氧还原反应

英文摘要: Mesostructured platinum-based nano-thinfilms (MPNTF) with three-dimensional porous metallic frameworks, high specific surface area and excellent permeability are superior low-platinum catalysts. Currently, only lyotropic liquid crystal (LLC) templated electrochemical approaches are available for synthesis of MPNTF. These demonstrated syntheses are not easy to be performed and the necessary LLC template reagents are very expensive, making the LLC-templated electrochemical synthesis very difficult to be scaled up. Addressing these bottlenecks and challenges, new principles and novel methods for electrochemical synthesis of MPNTF will be developed in this proposed project. The self-assemblies of the block copolymer micelles formed at the solid-liquid interfaces will be originally used as an soft template to direct the electrochemical formation of MPNTF. By innovatively introducing of expansion concept and dual template concept, respectively, the porous structure of the mesostructured films will be created in a controllable manner. Based on the newly developed porous-controllable electrochemical synthesis and electrocatalytic investigations, the nanopore interface effect and coupling effect at three-dimensional multi-scale will be revealed, which will be used for directing the rational design of the pore structure o

英文关键词: Pt-Based Electrocatalysts;Nanostructures;Mesoporous Structures;Methanol Oxidation Reaction;Oxygen Reduction Reaction

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
43+阅读 · 2021年9月7日
几何深度学习分子表示综述
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
29+阅读 · 2020年8月11日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关主题
相关VIP内容
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
43+阅读 · 2021年9月7日
几何深度学习分子表示综述
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
29+阅读 · 2020年8月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员