项目名称: 聚吡咯/植物纤维导电增强机理对水基聚氨酯掺杂剂尺寸和离子特性的依赖行为

项目编号: No.21204046

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 高分子科学

项目作者: 王海花

作者单位: 陕西科技大学

项目金额: 25万元

中文摘要: 合理控制聚合物掺杂剂的尺寸和离子密度是改善导电聚合物导电稳定性的关键,但目前主要集中于阴离子聚氨酯掺杂剂等的研究。采用水基阳离子或两性聚氨酯作为掺杂剂的研究很少见报道,有关水基聚氨酯(WPU)掺杂剂尺寸和离子特性对导电材料导电增强机理的系统控制仍不明确。我们的前期研究初步证明了聚吡咯(PPy)的导电性能和微观结构在很大程度上取决于掺杂剂的结构特性。本项目首次采用系列已知分子尺寸和离子特性的WPU作为原位聚合PPy改性植物纤维(PPyF)的掺杂剂,系统研究PPy、PPyF及其复合导电纸的导电稳定机理对WPU尺寸、离子基团电荷性、密度和分布的依赖行为,建立有效电导率模型;揭示导电纸力学性能随WPU、PPy和植物纤维间的相互作用、相界面性质等变化的规律。本项目不仅在理论上阐明WPU掺杂作用下PPy及导电纸的导电稳定机理,为聚合物掺杂剂的结构设计提供依据;而且为制备高强度可降解导电材料提供新途径。

中文关键词: 聚吡咯;植物纤维;大分子掺杂剂;复合导电材料;导电增强机制

英文摘要: Controlling the size and ionic density of polymeric dopant is the key point to improve the electrical stability of conductive polymer,but most researches focused on the investigation of anionic polyurethane dopant. Utilizing waterborne cationic or amphoteric polyurethane as dopant was seldom reported. And the systematic controlling mechanism of molecular size and ionic characteristic of waterborne polyurethane (WPU) dopant to the conductive and strengthening mechanism of conductive materials was ambiguous, which still need deep investigation. Our previous study have primarily demonstrated that the conductivity and microstructure of polypyrrole (PPy) depended mainly on the structural characteristics of dopant. In this project, series WPUs of definite molecular size and ionic characteristic will be adopted as the dopants for PPy modified plant fiber (PPyF) which were prepared by in-situ polymerization. The dependent behaviors of conductive and stability mechanism of PPy, PPyF and the composite conductive paper on WPU size, charge characteristics, density and distribution of ionic groups are systematically studied. Simultaneously a new model for effective electric conductivity of our composite conductive paper will be established. Furthermore, variations of mechanical properties of conductive paper with the inter

英文关键词: Polypyrrole;Plant Fiber;Polymer dopant;Conductive composite;Conducting and strengthening mechanism

成为VIP会员查看完整内容
0

相关内容

【ICML2022】MetAug:通过元特征增强的对比学习
专知会员服务
24+阅读 · 2022年5月20日
SIGIR2022|基于注意力超图网络的交互协同聚类
专知会员服务
24+阅读 · 2022年5月14日
【Cell】可扩展深度图神经网络的高性能材料性能预测
专知会员服务
17+阅读 · 2022年5月4日
深度学习模型鲁棒性研究综述
专知会员服务
91+阅读 · 2022年1月23日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
专知会员服务
26+阅读 · 2021年7月11日
专知会员服务
31+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月1日
Arxiv
0+阅读 · 2022年5月30日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
14+阅读 · 2018年4月18日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员