项目名称: 内含高压气体的仿植物细胞结构多孔材料的制备及其力学特性研究

项目编号: No.51302208

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 王波

作者单位: 西安交通大学

项目金额: 25万元

中文摘要: 超轻多孔陶瓷材料在轻质耐热承载等领域可发挥重要作用,比强度的提高是超轻多孔材料的重点和难点。获得仿植物细胞结构的充填高压气体的闭气孔是减重增强的有效手段。本研究结合植物细胞"原生质内压增强补韧"思想,拟采用"高压惰性气体原子固溶-降压气体释放"成孔技术,将惰性气体原子固溶的Pyrex玻璃体通过降压热处理释放气体,制备纳米至微米级闭孔内填充高压气体的仿植物细胞结构多孔Pyrex玻璃材料。通过对惰性气体的固溶与释放过程的扩散行为研究,揭示固溶率对气孔率、气孔结构和内压的调控作用,阐明气孔的成核-长大规律和多孔玻璃的成孔机制。研究固溶及热处理的温度、压力、升温速率对材料微观结构及力学性能的影响规律,进而实现材料组织和性能优化。结合高压气孔胞元孔壁的微观力学性能测试及数值模拟,揭示气孔内压的增强机理,建立多孔材料的气孔内压与尺度相关联的力学行为的理论模型,为超轻高比强多孔材料的创新设计提供新思路。

中文关键词: 热等静压;气孔内压;Pyrex玻璃;多孔材料;力学性能

英文摘要: Porous ceramics with ultra-low density are of great interest as potential engineering material in various industrial fields such as high temperature environment, et.al. However, their poor specific mechanical properties restrict their potential applications. Improving the specific strength is a complex and technological problem in the processing of ultra-low density ceramics materials around the world. There is an effective way to improve the specific mechanical properties of porous materials with ultra-low density by obtaining imitation plant cells with pressurized gas. The enclosed plasma liquid pressure in plant cells contributed to the excellent mechanical properties such as the high compressive strength. In this research, imitation plant cell structure cellular borosilicate glasses with pressurized gas filled closed pores were prepared by capsule-free hot isostatic pressing and subsequent isothermal heat treatment. During the sintering process, the argon gas was dissolved in the glass under high pressure, and then, argon gas released to form pressurized nano- to micro- size Ar-filled closed pores under low pressure at elevated temperatures. Based on the inert gas atom diffusion behavior study during inert gas dissolving and releasing process, the effect of gas dissolve rate on the porosity, pore structure a

英文关键词: Hot isostatic pressing;Enclosed gas pressure;Pyres glass;Porous materials;Mechanical properties

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
19+阅读 · 2021年4月1日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【CVPR2020】图神经网络中的几何原理连接
专知会员服务
56+阅读 · 2020年4月8日
专知会员服务
123+阅读 · 2020年3月26日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
ISI新研究:胶囊生成对抗网络
论智
17+阅读 · 2018年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关VIP内容
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
19+阅读 · 2021年4月1日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【CVPR2020】图神经网络中的几何原理连接
专知会员服务
56+阅读 · 2020年4月8日
专知会员服务
123+阅读 · 2020年3月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员