项目名称: 基于提高介孔分子筛水热稳定性的高缩聚度微结构单元的设计与合成

项目编号: No.21206202

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 化学工程及工业化学

项目作者: 许俊强

作者单位: 重庆理工大学

项目金额: 25万元

中文摘要: 有序介孔M41s材料因其具有独特的孔道结构,高比表面积和均匀的孔径分布成为了研究热点,但其孔壁较薄、呈无定形态、表面含大量硅羟基等特性,导致了其较差的水热稳定性。设计与合成高缩聚度微结构单元来制备介孔分子筛,可增加孔壁厚度和缩合程度,降低表面硅羟基数量,可提高介孔分子筛水热稳定性,这方面研究鲜有报道。据此提出在不使用有机结构导向剂的前提下,设计与合成高缩聚度微结构单元来提高介孔分子筛的水热稳定性。通过设计高缩聚度微结构单元的合成路线和结构及考察高缩聚度微结构单元合成过程的影响因素(温度、碱硅比、浓度、时间和pH值等),解决该单元结构与合成路线及影响因素之间的关系;通过分析介孔分子筛的制备与水热稳定性,解决介孔分子筛水热稳定性与微结构单元的关联性问题。研究成果将为高缩聚度微结构单元的设计与合成提供理论依据,为高水热稳定性介孔分子筛的制备提供新思路和新策略,促进介孔分子筛工业化应用。

中文关键词: 介孔分子筛;水热稳定性;微结构单元;缩聚度;合成

英文摘要: The ordered mesoporous silicas M41s materials have been become research theme in catalytic field due to their well-defined pore structure, high specific surface area and uniform pore size distribution. However, the ordered mesoporous silicas materials show the poor hydrothermal stability because of their thin frame wall thickness, the amorphous nature of the mesopore pore walls and many terminal Si-OH groups. Therefore, design and synthesis of microstructure silica units with the high degree of silica condensation to prepare the mesoporous molecular sieves can strengthen its pore wall thickness and condensation degree, and lessen terminal Si-OH groups, which are important in enhancement of hydrothermal stability. However, this approach has yet barely reported. Accordingly, the mesoporous silica materials with good hydrothermal stability is prepared by microstructure silica units with the high degree of silica condensation without organic structure directing agent. In this work, in order to obtain the relationship between the microstructure silica units with the high degree of silica condensation and synthetic route and effects factors, the microstructure silica units is prepared in the design route, and various process effects factors on microstructure silica units are systemically investigated including temper

英文关键词: mesoporous molecular sieves;hydrothermal stability;microstructure silica units;degree of silica condensation;synthesis

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
36+阅读 · 2021年7月17日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
28+阅读 · 2020年8月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Convex-Concave Min-Max Stackelberg Games
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月16日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
小贴士
相关主题
相关VIP内容
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
36+阅读 · 2021年7月17日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
28+阅读 · 2020年8月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员