项目名称: 织构化稀土取代铁氧体制备与磁性、磁光、毫米波特性的研究

项目编号: No.51272003

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 刘先松

作者单位: 安徽大学

项目金额: 83万元

中文摘要: 通过组合离子取代、添加外加磁场自由度,对永磁材料在组成、结构、晶粒进行优化,以期对磁矩的取向与排布、单畴结构等进行有效的人为控制,从而设计出特殊物性的材料,依然存在一些关键的科学问题。本研究通过稀土离子取代次晶位,在外加磁场下制备铁氧体材料,在一定温度梯度和外加磁场下制备织构化的永磁体,探索材料微结构与物性的内在本质。首先,通过调控材料的高饱和磁化强度,制备出具有高剩磁和高内禀矫顽力的永磁体。在此基础上,对永磁体进行织构化制备,探索 4f电子对光的敏化和猝灭机制,发现磁矩取向与纵向和极向磁光的耦合效应。通过磁场、温度梯度和应力调控,在满足ΔH前提下,为铁氧体微波收发器提供需要偏置场,降低损耗,实现共振频率从20GHz到50GHz位移。因此,本课题提出织构化稀土取代永磁体制备与磁性、磁光、毫米波特性的研究,不仅具有丰富的物理研究内涵,还拥有重要的应用价值,有望取得一些创新性的研究成果。

中文关键词: 铁氧体;磁体;磁性;稀土;磁光效应

英文摘要: Up till now, there still exist some key scientific problems for traditional materials in the different application such as permanent magnetic properties, magneto-optical activity and microwave/millimeter wave characteristics. We have given undivided attentions to its composition, structure, grain growth, the orientation of magnetic moment distribution and arrangement, single domain structure of the effective control by the mothod of mulit-ionic substitution and an applied magnetic field as a degree of freedom to induce an orientational ordering in order to synthesize the new unexpected materials or abtain an expected structure. By preparing a permanent magnetic material under an applied magnetic field and then manufacturing highly textured permanent magnet under temperature gradient technique and an applied field with a substitution of rare earth ions, this research explore an inner link of microstructure and physical properties. Firstly, by adjusting the crystallographical site occupied by rare earth ions, it is hoped that the materials with high saturation and permanent magnets with a higher intrinsic coercivity and a larger remanence will be discovered. Secondly, with the effect of 4f electron on the sensitization and quenching of a light and preparetion by highly textured permanent magnets, we will discover

英文关键词: ferrite;magnet;magnetic properties;rare earth;magneto-optical activity

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月28日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
【MIT】硬负样本的对比学习
专知会员服务
39+阅读 · 2020年10月14日
专知会员服务
21+阅读 · 2020年9月14日
喜茶奈雪不想当星巴克|焦点分析
36氪
0+阅读 · 2022年3月20日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
苹果 iMac 终于要上触摸屏了?
ZEALER订阅号
0+阅读 · 2021年12月27日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月28日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
【MIT】硬负样本的对比学习
专知会员服务
39+阅读 · 2020年10月14日
专知会员服务
21+阅读 · 2020年9月14日
相关资讯
喜茶奈雪不想当星巴克|焦点分析
36氪
0+阅读 · 2022年3月20日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
苹果 iMac 终于要上触摸屏了?
ZEALER订阅号
0+阅读 · 2021年12月27日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员