项目名称: 先进电子显微学方法及其在半导体异质结构中的应用
项目编号: No.11474329
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 王玉梅
作者单位: 中国科学院物理研究所
项目金额: 98万元
中文摘要: 针对半导体行业技术应用领先于基础研究的历史背景,本项目以密切影响半导 体器件光学、电学性能的异质外延结构中的界面和缺陷核心为主要研究内容,立足于赝弱相 位物体近似像衬度理论和解卷图像处理方法,采用传统200kV,LaB6 灯丝电镜与新型球差校 正电镜相结合、硬件与软件相结合、高分辨显微术与扫描透射显微术相结合的技术路线,在原子尺度解决Ⅲ-Ⅴ族半导体异质外延界面及缺陷核心等基本结构问题。同时发展和改善图像处理方法,使之适应球差校正电镜技术的新进展。建立新的方法来解决界面动力学衍射校正问题,给出在图像处理过程中利用超出电镜信息极限的结构信息的合理解释也是本项目的重要研究内容。通过对结构问题的深入研究,揭示半导体材料物理性能、结构与制备工艺之间的内在关系,为材料生长、器件设计提供结构依据。
中文关键词: 球差校正电子显微学;原子尺度;缺陷核心;III-IV族半导体异质结构;图像处理
英文摘要: For semiconductor industry, the technology applications keep ahead of the basic research. This project focus on the interface and defect core structures of semiconductor heterostructures which closely affect the optical and electrical properties of devices.The research will be based on the pseudo weak-phase object approximation theory of image contrast and image deconvolution processing. The technical route of combining the traditional 200 kV, LaB6 filament electron microscope and new type of spherical-aberration corrected electron microscope,combining the hardware and software,combining the HRTEM and STEM will be used to solve the basic scientific issues of the interface and defect core structures of Ⅲ-Ⅴ semiconductor heterostructures at atomic scale. At the same time, modifying and improving the present image processing methods fit the spherical-aberration corrected electron microscope. Establishing a new method to solve the problem of the dynamic diffraction correction for heteroepitaxial interface and trying to interpret reasonability of the structural information beyond the information limit of the electron micrsocope using in the image processing are also important research contents in this project. Through the in-depth study of structural problems, the relationship among the property, structure and preparation technology of semiconductor materials will be revealed and some structural grounds for material growth and device design will be provided.
英文关键词: Cs-corrected electron microscopy;atomic scale;dislocation core;III - IV semiconductor heterostructure;image processing