项目名称: 温度敏感型纳米贵金属材料的制备及在不对称氢化中的应用

项目编号: No.21203102

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理化学

项目作者: 楼兰兰

作者单位: 南开大学

项目金额: 25万元

中文摘要: 潜手性酮不对称氢化生成的手性仲醇是合成手性药物和精细化学品的重要有机中间体,设计研制易制备、催化性能良好、又易于与体系分离和循环使用的多相不对称氢化催化剂是该领域研究的重要课题。本项目拟通过温敏聚合物与金属纳米粒子之间的强相互作用,制备温敏聚合物PNIPAAm修饰的金属催化剂。这些催化剂不仅具备金属胶体粒子的优点,有望手性修饰后在α-潜手性酮的不对称催化氢化反应中表现出较高的活性和对映选择性,并且可以利用聚合物对环境温度变化的敏感相变转换,实现与反应体系的简单分离,此外聚合物与金属表面的强相互作用,可以有效防止体系中金属的迁移、聚集和流失。通过项目的研究,以期发展一类新型、高效、稳定耐用的多相不对称氢化催化剂体系,进一步拓宽多相不对称氢化反应的研究领域,同时也开发一种有效的多相手性催化剂的制备方法。

中文关键词: 温敏聚合物;金属纳米颗粒;潜手性酮;不对称氢化;

英文摘要: The asymmetric hydrogenation of prochiral ketones to corresponding optically pure secondary alcohols is one of the most important reactions in the field of chiral pharmaceuticals and fine chemicals. The investigation on heterogeneous hydrogenation catalyst combining the advantages of ready preparation, high catalytic performance, as well as easy separation and reuse, has attracted more and more attention in the recent years. The present subject therefore aims to develop a novel metal nanocatalyst grafted with PNIPAAm, a thermosensitive polymer. The polymer-modified metal nanoparticles would combine the merits of both metal colloidal catalyst and thermosensitive polymer. So it is expected that the modified metal nanocatalyst could exhibit high catalytic activity and enantioselectivity for the asymmetric hydrogenation of α-ketoesters in the presence of cinchona as chiral modifier. And this metal nanocatalyst is also expected to be easily separated from the catalytic reaction system due to the sensitive temperature-induced phase separation contributed by PNIPAAm. Moreover, the strong interaction between polymer molecules and metal surface could protect the small metal particles from migration, aggregation and leaching. This research would develop a novel heterogeneous asymmetric hydrogenation catalyst system with

英文关键词: Thermosensitive polymer;Metal nanoparticle;Prochiral ketone;Asymmetric hydrogenation;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年3月9日
异质图嵌入综述: 方法、技术、应用和资源
专知会员服务
47+阅读 · 2020年12月13日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年3月9日
异质图嵌入综述: 方法、技术、应用和资源
专知会员服务
47+阅读 · 2020年12月13日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员