项目名称: 基于混合等离子体波导的硅基集成偏振控制器件研究

项目编号: No.61377049

项目类型: 面上项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 周治平

作者单位: 北京大学

项目金额: 81万元

中文摘要: 硅基光电子是突破后摩尔时代微电子技术困境的最有效方案之一。而偏振控制是硅基光电子回路长久以来的难题,特别是偏振旋转等关键器件,尚无很好的解决方案。本项目提出混合等离子波导与硅波导耦合结构,创新性的引入金属材料,与传统的基于硅波导的偏振旋转器相比,引入新的调控机制,大大增加了调控能力,增强交叉偏振耦合强度。本项目将围绕交叉偏振耦合理论与金属对混合等离子波导中模式偏振特性与色散特性影响机理两大关键问题,首次提出完备的物理模型与研究方法,在此基础上设计并实验制备、测试具有超小尺寸、高偏振转化率、高工艺可行性的集成偏振旋转器。并以此为基础,提出高集成度的新型偏振旋转/分束器,和时域控制的有源偏振调制器。为硅基光电子集成中的偏振问题提供新的有效解决方案,并对表面等离子与介质器件混合集成提供依据与指导,具有重要理论价值和广泛的应用意义。

中文关键词: 交叉偏振耦合;混合等离子波导;偏振旋转器;硅基光电子;

英文摘要: Si photonics is one of the most promising solutions to break the bottleneck in micro-electronics. However, a key problem in Si photonics is how to realize effective polarization control on chip, such as polarization rotators. We propose a coupled structure composed of a hybrid plasmonic waveguide (HPW) and a Si wire waveguide. Compared to traditional Si waveguide-based polarization rotators, the introduction of metal could highly increase the degree of freedom to control the polarization state, and enhance the cross polarization coupling efficiency. We will first focus on two key theoretical problems: cross polarization coupling and metal's effects on modes polarization state and dispersion properties in HPW, figure out the mechanisms and try to propose a physical model for the first time. Based on the theory, a polarization rotator with high polarization conversion efficiency, ultra-compact size and good fabrication feasibility will be designed, fabricated and tested. In addition, we will propose a polarization rotator/splitter to further increase the integration density, and a novel active polarization modulator with time domain control. This project will provide a novel and effective solution for integrated polarization-selective devices in Si photonics. Moreover, it paves the way to realize hybrid integration of plasmonic-based devices and dielectric-based devices.

英文关键词: cross polarization coupling;hybrid plasmoinc waveguide;polarization rotator;silicon photonics

成为VIP会员查看完整内容
0

相关内容

专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年7月25日
专知会员服务
37+阅读 · 2021年5月9日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
51+阅读 · 2020年12月1日
基于深度学习的多标签生成研究进展
专知会员服务
140+阅读 · 2020年4月25日
迎接元宇宙,驭光科技推出AR光波导新产品
机器之心
0+阅读 · 2022年4月11日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
31+阅读 · 2020年9月21日
小贴士
相关VIP内容
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年7月25日
专知会员服务
37+阅读 · 2021年5月9日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
51+阅读 · 2020年12月1日
基于深度学习的多标签生成研究进展
专知会员服务
140+阅读 · 2020年4月25日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员