项目名称: 氧化石墨烯/聚氨酯泡沫基活性复合材料高效吸附放射性核素的机理研究

项目编号: No.21677045

项目类型: 面上项目

立项/批准年度: 2017

项目学科: 化学工业

项目作者: 郭志强

作者单位: 合肥工业大学

项目金额: 30万元

中文摘要: 放射性核素在水体中极易迁移, 对生态环境和人类健康有着极大的潜在威胁。因此,制备和研究简单高效、环境友好、经济合理以及回收方便的新型材料对于放射性废水的处理具有重大的意义。本项目充分利用氧化石墨烯对放射性核素的高吸附性、偕胺肟和镁铝双氢氧化物对放射性核素铀和锝的高选择性以及聚氨酯泡沫的易分离性,通过构筑氧化石墨烯/聚氨酯泡沫基复合材料,实现材料性能的优势互补。本项目拟采用批试验法研究环境条件对铀和锝在该复合材料上吸附的影响机制;采用静态试验和光谱表征相结合,从宏观和微观两个层面解释该复合材料对铀和锝的吸附机理,揭示复合材料的结构、组成和表面官能团与铀和锝的吸附形态和微观结构间的内在关联规律,为放射性废水的处理提供有意义的理论指导。

中文关键词: 氧化石墨烯/聚氨酯泡沫;偕胺肟;镁铝双氢氧化物;放射性核素;吸附机理

英文摘要: The radionuclides can easily transfer in the aqueous environment, causing great potential threats to ecological environment and human health. Therefore, it has become an urgent problem to synthesize and study novel materials with outstanding properties such as simpleness and high efficiency, environmental friendliness, economic rationality and easy recovery to treat radioactive wastewater. In this project, we keep a watchful eye on high sorption capacity of graphene oxide toward radionuclides, high selectivity of amidoxime and magnesium aluminum double hydroxide toward uranium and technetium and easy separation of polyurethane foam. Therefore, graphene oxide/polyurethane foam-based composites will be prepared,achieving complement each other's advantages. The effects of environmental conditions on sorption of uranium and technetium on the composites will be investigated by batch technique. The sorption mechanisms of uranium and technetium on the composites will be explained by combining batch experiments and microscopic characterizations. The relationship between the structure, composition and surface functional groups of the composites and chemical forms and microstructures of uranium and technetium will be disclosed. The findings will help providing theoretical guidance for the radioactive wastewater treatment.

英文关键词: graphene oxide/polyurethane foam;amidoxime;magnesium aluminum double hydroxide;radionuclides;sorption mechanism

成为VIP会员查看完整内容
0

相关内容

专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
124+阅读 · 2021年4月29日
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
专知会员服务
46+阅读 · 2020年11月13日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
基于深度学习的小目标检测方法综述
专知
2+阅读 · 2021年4月29日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
19+阅读 · 2020年7月21日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关主题
相关VIP内容
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
124+阅读 · 2021年4月29日
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
专知会员服务
46+阅读 · 2020年11月13日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员