项目名称: 基于微纳光纤与光子晶体慢光波导的低噪声窄线宽光纤激光技术研究

项目编号: No.61275149

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 任立勇

作者单位: 中国科学院西安光学精密机械研究所

项目金额: 98万元

中文摘要: 高性能(超高稳定、低噪声、窄线宽)单纵模光纤激光器在相干光通信、微波光子技术和相干雷达探测等领域具有重要应用价值。在光学介质中人为地产生色散随频率的急剧变化,从而获得群速度减慢的慢光效应和技术具有重要的科学意义和应用价值。本申请提出了将微纳光纤与W1型(缺失一行空气孔)硅基光子晶体波导结合产生低损耗、高群折射率ng、低群速度色散GVD的复合型慢光波导的新方法,并将该慢光波导植入光学谐振腔中(从而增大谐振腔的腔长、光子寿命和品质因数Q,减小自由光谱范围),旨在获得高性能单纵模光纤激光输出。研究内容包括:1)高ng、低GVD、低插入损耗复合型波导的研制及其慢光特性研究;2)慢光波导植入环行行波振荡腔的铒镱共掺光纤激光器的腔模和激射特性研究;3)光纤激光器系统的建立、输出性能测试和参数优化。本项目将微纳光纤、光子晶体波导、慢光和光纤激光技术结合,必将为新型高性能光纤激光器的研制提供创思想和技术。

中文关键词: 微光纤谐振器;微纳光纤;慢光;窄线宽光纤激光器;多波长光纤激光

英文摘要: Single longitudinal-mode fiber laser with high-quality (ultra-high stability, low-noise, narrow-linewidth) has significant applications in the fields such as fiber sensing, coherent communications, microwave photonics, LIDAR detecting, etc. By purposely constructing a large variation of dispersion with frequency in an optical medium, slowing down the group velocity of optical pulses (so-called slow light) is realized, which shows great science significance and application value. This project proposes a new method where the micro/nano fiber and W1-type (missing one air-hole line) photonic-crystal waveguide is combined to produce a slow-light waveguide with low-lose, high group-index (ng) and low group-velocity dispersion (GVD). We introduce such a combined slow-light waveguide into the optical resonance cavity to increase the cavity length, the photon lifetime, the Q factor and decrease the Free Spectral Range (FSR). The motivation of this is to obtain a novel fiber laser with high-quality laser output. This research includes: 1) designing and fabricating the combined waveguide with high group-index, low GVD and low insertion loss, as well as studying its slow-light characteristics; 2) analysis of cavity modes and lasing characteristics of the Er/Yb co-doped fiber laser where the slow-light waveguide is embedded

英文关键词: microfiber resonator;micro/nano fiber;slow light;narrow-linewidth fiber laser;multiple-wavelength fiber laser

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
40+阅读 · 2022年3月21日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
54+阅读 · 2021年3月15日
专知会员服务
132+阅读 · 2021年3月13日
专知会员服务
38+阅读 · 2021年2月8日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
迎接元宇宙,驭光科技推出AR光波导新产品
机器之心
0+阅读 · 2022年4月11日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月7日
Arxiv
14+阅读 · 2020年12月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
40+阅读 · 2022年3月21日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
54+阅读 · 2021年3月15日
专知会员服务
132+阅读 · 2021年3月13日
专知会员服务
38+阅读 · 2021年2月8日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员