项目名称: 基于共性视觉特征与反馈机制的SAR图像目标检测方法研究
项目编号: No.41771407
项目类型: 面上项目
立项/批准年度: 2018
项目学科: 天文学、地球科学
项目作者: 张立保
作者单位: 北京师范大学
项目金额: 20万元
中文摘要: 如何利用视觉注意机制快速、高效地从海量SAR数据中检测目标已成为SAR图像处理领域亟待解决的关键问题之一,对缓解SAR图像高速获取与低速解译间的矛盾具有重要意义。针对现有方法仅考虑单幅图像视觉特征,难以抑制背景中显著性较高的杂波干扰,无法排除无感兴趣目标的SAR图像等问题,本项目拟从具有相似目标特征的多幅SAR图像入手,首先结合超像素分割与视觉特征统计分析,构建具有抗相干斑噪声能力的单图视觉显著特征分析模型,有效提取初始目标区域;然后充分发掘这些区域的共性视觉特征,结合目标相似度划分构建基于特征相似性度量的反馈机制,充分抑制显著性较高的杂波干扰,实现SAR图像目标的快速、高效检测并将无共性目标图像有效排除;最后建立基于几何特征的评价指标,实现对SAR图像目标检测方法的有效评估。上述研究将为准确高效地检测SAR图像目标开辟新的研究思路,相关成果将为SAR图像自动解译提供重要的理论与技术支持。
中文关键词: 目标探测;特征提取;目标特征分析;视觉注意机制;显著性检测
英文摘要: How to use visual attention mechanism to detect objects quickly and efficiently from a mass of SAR data has become one of the key problems in SAR image processing, which is very important to alleviate the contradiction between high-speed acquisition and low-speed interpretation of SAR images. Most existing methods only take single-image visual feature into account. Hence, they can not effectively suppress the interference caused by the salient clutter in the background, neither can they rule out SAR images without objects of interest. To solve the above problems, this project simultaneously analyses multiple SAR images with similar target characteristics. Firstly, we combine superpixel segmentation with statistical analysis of visual characteristics, to construct a single-image visual saliency feature analysis model with strong anti-speckle noise capability, and the initial target areas are thus extracted effectively. Then, the common visual saliency features of these regions are fully explored and integrated with the target similarity based division strategy, to construct a feedback mechanism on the basis of feature similarity measurement. Such mechanism can sufficiently suppress the interference caused by the salient clutter, which facilitates not only fast and efficient target detection in the SAR images, but also effective elimination of SAR images that do not contain common targets. Lastly, the project will establish a set of geometric characteristic based evaluation indices, to achieve accurate and valid assessment of target detection in the SAR images. The above research will offer new research ideas for accurate and efficient target detection in SAR images. The related results will provide important theoretical and technical supports for the automatic SAR image interpretation technology.
英文关键词: target detection;feature extraction;object feature analysis;visual attention mechanism;saliency detection