项目名称: 面向光互联的光子波导耦合激发表面等离激元定向光波天线研究

项目编号: No.61205030

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 李强

作者单位: 浙江大学

项目金额: 28万元

中文摘要: 光互连技术是解决电互连数据传输瓶颈的必然选择。光衍射极限限制了光互连芯片上光子器件的集成度和数据传输容量。针对这一问题,本项目提出将SPP光波天线引入光互连平台,利用光子波导耦合激发SPP光波天线实现数据在自由空间中传输,既利用SPP光波天线的定向辐射和突破衍射极限特性,又充分发挥硅光子器件的低损耗和导波特性,从而大大拓展片上光互联数据通信的空间范围。项目围绕介质光子波导/SPP定向光波天线纳米异质结构中的局域耦合效应这一中心问题,研究光子波导耦合型SPP光波天线激发、局域耦合、能量传输和转换的物理机理和调控机制,设计、制备和表征具有局域耦合效应的光子波导耦合型SPP光波天线。研究成果不仅可以使片上数据通信的空间范围从芯片平面拓展到整个空间,而且将为光子器件、SPP器件和微电子器件的混合集成提供新的应用空间。

中文关键词: 光波天线;表面等离激元;光互连;耦合激发;

英文摘要: Optical interconnect is an exclusive solution to cope with the bottleneck of conventional electric interconnect. However, diffraction limits the maximum integration densities and available capacities for data communication on optical interconnect chips. To alleviate this problem, surface plasmon polariton (SPP) antennae which can break the diffraction limit are introduced into optical interconnect chips to realize hybrid integration with silicon photonic devices. This scheme transfers waveguide modes in silicon waveguides into directional optical radiations in free spaces through SPP antennae, thus significantly expanding the spatial extent for data communication on optical interconnect chips. This project aims at local coupling effects in nano-hetero structure composed of photonic waveguides / SPP antennae. The antenna excitation, local coupling, energy transfer and conversion in this hetero structure will be investigated. Optical antennae excited by photonic waveguides will be designed, fabricated and characterized. The results from this project will not only expand the data communications from chips to the whole space, but also provide new ideas for hybrid integration of photonic devices, SPP devices and microelectronic devices.

英文关键词: Optical antenna;surface plasmon polariton;optical interconnect;coupling excitation;

成为VIP会员查看完整内容
0

相关内容

《6G总体白皮书》未来移动通信论坛
专知会员服务
39+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
62+阅读 · 2022年3月20日
隐私计算应用白皮书, 54页pdf
专知会员服务
175+阅读 · 2021年12月18日
专知会员服务
31+阅读 · 2021年10月12日
专知会员服务
66+阅读 · 2021年5月8日
专知会员服务
64+阅读 · 2021年5月3日
迎接元宇宙,驭光科技推出AR光波导新产品
机器之心
0+阅读 · 2022年4月11日
物理外挂!今年华为 5G 手机有戏了?
ZEALER订阅号
0+阅读 · 2022年3月13日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Transparent Shape from Single Polarization Images
Arxiv
0+阅读 · 2022年4月19日
Arxiv
12+阅读 · 2018年1月28日
小贴士
相关VIP内容
《6G总体白皮书》未来移动通信论坛
专知会员服务
39+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
62+阅读 · 2022年3月20日
隐私计算应用白皮书, 54页pdf
专知会员服务
175+阅读 · 2021年12月18日
专知会员服务
31+阅读 · 2021年10月12日
专知会员服务
66+阅读 · 2021年5月8日
专知会员服务
64+阅读 · 2021年5月3日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
微信扫码咨询专知VIP会员