项目名称: 综合数据驱动与模型驱动的机载LiDAR数据复杂建筑建模方法
项目编号: No.41301521
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 天文学、地球科学
项目作者: 陈动
作者单位: 南京林业大学
项目金额: 25万元
中文摘要: 作为城市核心三维基础地理信息的三维建筑模型在城市规划、城市管理和数字城市等行业发挥了越来越重要的作用。本研究拟融合数据和模型驱动的思想,基于LiDAR离散点云和全波形LiDAR数据,研究复杂建筑屋顶自动重建的技术与方法。首先利用数据驱动,在特定语义约束下分割复杂建筑屋顶为分割单元,然后对分割单元采用模型驱动,并借助最优化理论和统计分析方法匹配参数模型基元库,最终组合所有分割单元模型,完成复杂建筑屋顶的建模。改进的基于数据驱动屋顶面片分割RANSAC算法,保证了分割面片拓扑关系,克服了过分割或欠分割的缺陷,能够合理分割复杂建筑或连体建筑屋顶;基于模型驱动的匹配方法摒弃了传建模方法中认为"屋顶是由平面构成的多面体模型"的不合理假设,可构建平面、圆柱、圆锥和圆球等规则几何元素或不规则曲面,或者其组合构成的复杂屋顶。本课题将拓展LiDAR数据建筑方法,实现大面积三维建筑模型的快速更新及工程化应用。
中文关键词: 激光雷达;建筑建模;波形分解;混合驱动;点云处理
英文摘要: The three-dimensional building model is one of the core fundamental information under the rapid growth of city area, which plays an important role in city planning, city management, digital city, etc. In this research, an automatic hybrid-driven method for reconstructing 3D geometrical building models is developed through the combination of the data-driven and model-driven methods based on the discrete-return and full-waveform airborne light detection and ranging (LiDAR) data. The complicated building rooftop is first reasonably segmented into non-overlapping quadrilaterals with common edges under semantic constrains. Then the quadrilaterals are reconstructed by matching the primitive library objects through the optimization theory and statistical analysis methods. Finally, an integrated building model can be obtained by composing those quadrilateral sub-models together. In the hybrid-driven framework, an improved random sample consensus (RANSAC) algorithm based on data-driven is used to correctly segment the rooftop patches of each building or group of connected buildings which often lie in shantytowns or along the urban street. The algorithm successfully maintains the topological consistency among primitives and can avoid under-segmentation and over-segmentation. The robust model-driven matching method abandon
英文关键词: LiDAR;Building reconstruction;Full-waveform decomposition;Hybrid reconstruction;Point cloud processing