项目名称: 超音速流场激光光谱诊断中的温度/压力修正方法研究

项目编号: No.61205151

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 何俊峰

作者单位: 中国人民解放军陆军军官学院

项目金额: 28万元

中文摘要: 氧气是大部分飞行器发动机燃烧过程中必需的氧化剂,对发动机进气道氧气浓度和流速进行在线实时监测、准确获取氧气的质量流量是控制发动机燃料供给、优化发动机燃烧效率的关键。激光光谱技术弥补了传统传感器环境适应性等不足,氧气探测优势明显。但是,超音速飞行过程中气体的压力、温度波动较大,影响氧气测量的准确性。 本申请针对航空航天发动机研究中超音速流场诊断的迫切需求,对激光光谱氧气质量流量监测中温度和压力修正方法进行研究:研究分子吸收谱线的氧气温度反演与修正方法,研究基于特征光谱拟合的氧气分子数浓度快速反演方法,研究基于氧气分子吸收谱线频移的气流流速测量方法,研究高温气体浓度探测中的温度修正方法,研究消除气压变化影响的光谱反演方法,实现对超音速气流氧气质量流量的快速、在线、准确测量。 本项目充分发挥半导体激光光谱测量非浸入式测量、响应速度快、灵敏度高等优势,为航空航天发动机研究与发展提供新的技术支持。

中文关键词: 超音速气流;飞行器发动机;激光光谱;温度压力修正;

英文摘要: Oxygen is the oxidizer for the aeroengine combustion of most ramjet. The real time measurement of inlet oxygen mass and flux for the accurate calculation of oxygen velocity and concentration is vital to control aeroengine fuel supply and improve combustion efficiency. Laser spectroscopy makes up for the shortcomings of traditional sensors because it is more adaptive to environment and has a prominent advantage for oxygen detection. However, the large scale fluctuation of inlet gas pressure and temperature during supersonic flight would be a challenge to obtain accurate measurement of oxygen. The research aims to develop the method of oxygen pressure and temperature correction during oxygen mass flow measurement based on laser spectroscopy under the urgent need for supersonic flow diagnoses in the study of aeroengine. The research contents include: the method of temperature retrieval and correction based on oxygen absorption spectroscopy; the method of oxygen molecule concentration retrieval based on spectrum parameters fitting; the method of flow velocity measurement based on Doppler shift of the absorption line center frequency; the method of temperature correction in high temperature gas concentration detection; the method of spectrum retrieval for the elimination of effects of gas pressure changes for the f

英文关键词: supersonic flow;aeroengine;laser spectroscopic;temperature/pressure correction;

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
89+阅读 · 2022年4月17日
专知会员服务
52+阅读 · 2021年10月1日
2021年中国人工智能在工业领域的应用研究报告(附报告)
【KDD2020】动态知识图谱的多事件预测
专知会员服务
127+阅读 · 2020年8月30日
谁能阻止马斯克「无序扩张」?
创业邦杂志
0+阅读 · 2022年4月6日
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
如何利用深度学习优化大气污染物排放量估算?
微软研究院AI头条
0+阅读 · 2021年8月31日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
56+阅读 · 2021年5月3日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
89+阅读 · 2022年4月17日
专知会员服务
52+阅读 · 2021年10月1日
2021年中国人工智能在工业领域的应用研究报告(附报告)
【KDD2020】动态知识图谱的多事件预测
专知会员服务
127+阅读 · 2020年8月30日
相关资讯
谁能阻止马斯克「无序扩张」?
创业邦杂志
0+阅读 · 2022年4月6日
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
如何利用深度学习优化大气污染物排放量估算?
微软研究院AI头条
0+阅读 · 2021年8月31日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
微信扫码咨询专知VIP会员