项目名称: 采用有机物金属盐掺杂提高MgB2超导性能的研究

项目编号: No.50802093

项目类型: 青年科学基金项目

立项/批准年度: 2009

项目学科: 金属学与金属工艺

项目作者: 张现平

作者单位: 中国科学院电工研究所

项目金额: 20万元

中文摘要: 二硼化镁(MgB2)作为一种新型超导体,具有临界转变温度高、相干长度较大、原料成本低、结构简单、临界电流密度高等优点,在交通、电力、医疗等领域具有广阔的应用前景。本项目旨在通过系统的有机金属盐掺杂研究来解决MgB2材料存在的缺乏有效磁通钉扎中心、不可逆场较低以及晶粒连接性差等问题,从而获得具有高临界电流密度的MgB2材料。项目从原料处理工艺、机械加工工艺、热处理工艺、球磨介质、化学掺杂等方面系统研究了各种因素对MgB2材料晶粒大小、晶格结构、晶界性质、能带散射强度、纳米沉积物、晶格缺陷以及磁通钉扎能力等方面的影响规律,掌握了制备高性能MgB2材料的制备工艺和化学掺杂途径,推动了对化学掺杂提高MgB2材料超导性能机理的认识和了解。

中文关键词: 二硼化镁;掺杂;临界电流密度

英文摘要: Magnesium diboride (MgB2) has a high critical temperature, large coherence length, low raw material cost, simple structure, and high critical current density. Therefore, it was thought to have broad application prospects in the field of transportation, electricity, medical care, et al. This project aims to study the doping effect of organic metal salts on the microstructure and superconducting properties of MgB2. By solving the problems existed in this material, such as lack of effective flux pinning centers, low irreversible field and poor grain connectivity, high critical current density could be obtained in MgB2 materials. Start from raw materials processing, mechanical processing, heat treatment, milling media, chemical doping and other aspects, this project systematically studied various factors on the MgB2 grain size, lattice structure, grain boundary, scattering strength, lattice defects and flux pinning ability, et al. By optimizing preparation process and chemical doping technique, MgB2 tapes with high critical current density were fabricated. The improve mechanism of chemical doping in MgB2 materials are idiographic interpreted from several aspect.

英文关键词: MgB2;chemical addition;critical current density

成为VIP会员查看完整内容
0

相关内容

严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
【Reza Yazdanfar】基于递归神经网络的多元缺失值时间序列
专知会员服务
52+阅读 · 2021年10月16日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Convex-Concave Min-Max Stackelberg Games
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月16日
小贴士
相关VIP内容
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
【Reza Yazdanfar】基于递归神经网络的多元缺失值时间序列
专知会员服务
52+阅读 · 2021年10月16日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员