项目名称: 全钒液流电池用高性能微纳分级孔CNF电极的设计制备及性能研究

项目编号: No.21506210

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 有机化学

项目作者: 刘涛

作者单位: 中国科学院大连化学物理研究所

项目金额: 21万元

中文摘要: 电极是全钒液流电池(VFB)的关键核心部件之一,目前VFB用电极存在着电极较厚欧姆极化较大的问题,导致VFB工作电流密度较低而成本过高。本项目针对VFB电极中存在的欧姆极化与活化极化及浓差极化之间的矛盾问题,提出将多喷头静电纺丝制备碳纳米纤维(CNF)技术与活化造孔技术相结合,制备具有微纳分级孔结构的VFB用CNF电极材料的新构思。通过该设计,电极的超薄厚度(几十-几百微米)可大幅度降低电池欧姆极化;其较大的表面积和丰富的含氧官能团会赋予电极较高的电催化活性;而微纳分级孔有利于减小电解质溶液传质过程中的阻力,进而提高电极的导电性、电催化活性及传质性能。本项目将深入研究微纳分级孔CNF电极的构效关系和性能控制机制,为VFB用高性能电极的研发提供技术支持及理论依据。

中文关键词: 全钒液流电池;电极;碳材料;静电纺丝;电化学性能

英文摘要: Electrode is one of the key materials of vanadium flow battery (VFB). Nowdays the thickness of the electrode is large and the resultant large internal resistance of VFB lead to the low working current density and the high cost of VFB. To resolve the contradiction among ohmic polarization, activation polarization and concentration polarization, the project proposed the idea of using carbon nanofiber web with micro-nano hierarchical pore structure as the electrode material of VFB. This kind of carbon nanofiber web was prepared by combining the co-electrospinning from multi-spinnerets with pore formed by activation techniques. In this design, the ultra-thin electrode thickness (tens - hundreds microns) will reduce the gap between the positive and negative current collector, hence reduce the internal resistance of VFB. The large surface area and plenty of oxygen-containing functional groups will provide the electrode the high electrocatalytic activity, and the micro-nano hierarchical pore structure will benefit to reduce the resistance during the mass transferring process. Therefore, it is a promising VFB electrode with high condutivity, high electrocatalysis activity and high mass transfer performance. In this project, further invesitigation will be focused on the relation between the perfomance and electrode structure, which will provide the basic theoretical guidance and experimental supporting for high performance VFB electrode.

英文关键词: all vanadium flow battery;electrode;carbon material;electrospinning;electrochemical performance

成为VIP会员查看完整内容
0

相关内容

《华为智慧农业解决方案》21页PPT
专知会员服务
115+阅读 · 2022年3月23日
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
轻量化神经网络卷积设计研究进展
专知会员服务
54+阅读 · 2021年10月24日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
iLogtail 与Filebeat 性能对比
阿里技术
0+阅读 · 2022年1月24日
iQOO Neo5S 性能与控温达到平衡了吗?
ZEALER订阅号
0+阅读 · 2021年12月21日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
八一八:我就没搞明白什么叫“纯钴”电池
无人机
34+阅读 · 2019年4月12日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月18日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
《华为智慧农业解决方案》21页PPT
专知会员服务
115+阅读 · 2022年3月23日
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
轻量化神经网络卷积设计研究进展
专知会员服务
54+阅读 · 2021年10月24日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
相关资讯
iLogtail 与Filebeat 性能对比
阿里技术
0+阅读 · 2022年1月24日
iQOO Neo5S 性能与控温达到平衡了吗?
ZEALER订阅号
0+阅读 · 2021年12月21日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
八一八:我就没搞明白什么叫“纯钴”电池
无人机
34+阅读 · 2019年4月12日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员