项目名称: 政府、银行和房地产的合作与冲突- - 基于动态博弈视角的房价调控均衡政策探索
项目编号: No.71473204
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 管理科学
项目作者: 刘畅
作者单位: 四川大学
项目金额: 61万元
中文摘要: 研究抑制房价快速上涨的调控政策应该是在由政府、银行和房地产三个节点构成的完整系统中,在经济增长目标及社会总福利与社会总成本最优配置的约束条件下,重复不完全信息博弈和动态均衡的寻优过程。本研究首先将上述三个节点的两两合作与冲突行为扩展到三者之间进行分析,建立完整系统。通过多主体、多方向的博弈分析,完整地展现系统内合作与冲突行为的传导与叠加过程。其次,将政府作为系统合作与冲突行为的起点和终点,建立三节点合作福利和冲突成本算法,构建不完全信息下重复博弈和动态均衡模型。最后,在上述约束条件下,通过对动态规划进行数值寻优和模拟,结合近年来我国房地产调控的实际经验数据,估算可行解空间范围内的最优解集。通过设定最优解集的递进关系,即根据社会总福利和社会总成本的边际增加(减少)域,来对解集进行排序,从而建立调控政策集的福利和成本精确量化评估方法,进而获得长期均衡下的最优房地产调控政策域。
中文关键词: 房价调控;合作与冲突;动态博弈;可行解空间最优解集
英文摘要: The searching for housing prices control policies is an incomplete information dynamical games, in which equilibrium would be approximated under the conditions of the optimal tradeoff between the overall social welfare and overall social cost in the complex of a close system, consisting of the government, banks, and real estate developers. The study, extending the analysis of two-two games to the games among government, banks, and real estate developers, will first demonstrate the dynamical transition and composition process of social welfare and social cost within the system. Secondly, using the government as the starting and ending point of the complete loop system, our study developed an algorithm for approximating the overall social welfare and social cost based on the incomplete information dynamical game and equilibrium. Finally, constrained to the optimal condition mention above, the feasible solution set could be simulated based on dynamical programming approaches. Furthermore, the optimal solution set could be selected within the feasible solution set based on the optimal tradeoff between the marginal welfares and marginal costs. As a result, this study could be utilized for housing prices control policies evaluation and therefore provide long-term equilibrium for the cooperation and conflict conducts among the government, banks, and real estate developers.
英文关键词: Housing Prices Control;Cooperation and Conflict;Dynamical Games;Optimal Feasible Solution Sets