项目名称: 一类参数不确定混杂系统的事件反馈闭环优化方法及其在炼钢生产运行中的应用

项目编号: No.61473074

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 自动化技术、计算机技术

项目作者: 罗小川

作者单位: 东北大学

项目金额: 80万元

中文摘要: 以炼钢为代表的一类生产流程,受原料、设备等多种不确定因素干扰。其生产运行系统实现调度与过程控制的衔接,是一类特殊的混杂动态系统,即:调度过程对象可由离散事件系统模型准确描述;而过程工艺涉及多物理场耦合,难以建立准确连续时间模型。因此往往采取人工操作模式实现调度和过程控制的衔接,不能根据生产变化优化生产运行,出现能耗和质量等问题。 本项目针对一类参数不确定混杂系统,提出事件反馈闭环优化结构和设计分析方法: 以动态着色路径图描述物质流动态关系,提出图的解耦方法;建立基于生产数据的运行指标数据包络模型,实现指标的离线评价和在线补偿;建立过程模型不准确性的测度,提出系统对象MPA模型的可约性、可观性、可控性和稳定性等分析评价方法;建立事件驱动的闭环反馈滚动优化结构,提出事件观测器设计方法、MPA-DAE约束的序列对偶线性规划和性能指标灵敏度学习优化算法;以炼钢为背景开发原型系统。

中文关键词: 动态调度;事件闭环反馈优化;极大代数;混杂动态系统;炼钢生产运行

英文摘要: There exists a kind of industrial system such as Steelmaking-casting process system, in which there are so many uncertainty disturbances, e.g. raw material, operation conditions, and machines etc. The operation systems of such industrial systems, which are the interfaces between scheduling systems and process control systems, are the specific hybrid systems. The hybrid systems have the accurate DEDS models, which describe the scheduling sequences of jobs, and the inaccurate CVDS models, which describe the multi-physics fields. Therefore manual operation mode is chosen in real industrial process. However, manual operation cannot respond those disturbances in time. As a result, the operation performances of the process are worse with those problems as more energy consumption and worse product quality. The proposal will develop the event-feedback control structure, controller design and analysis methods for the specific hybrid systems with uncertainty parameters. First, we will propose the graph decomposition and decoupling technologies based on the hyper-structures of substance flow using dynamic color path graph, then propose the methods to optimize and compensate dynamically performance criterions with fuzzy set and DEA model. Second, we will present the uncertainty measure of hybrid system models and the analysis methods of MPA equations for reducibility, observability, controllability and stability. Third, we will propose the event-feedback control structure, design the event observer, and develop sequential duality of linear Programming algorithm and performance-sensitivity-based learning and optimization algorithm for the problem with MPA and DAE constraints. Finally, we will develop operation simulation experiment system and dynamic operation optimization prototype system for steelmaking plant.

英文关键词: Dynamic scheduling;Event-feedback optimization;Max Plus Algebra;Hybrid System;Steelmaking Operation

成为VIP会员查看完整内容
0

相关内容

【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
数字孪生模型构建理论及应用
专知会员服务
221+阅读 · 2022年4月19日
专知会员服务
32+阅读 · 2021年9月14日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
94+阅读 · 2021年2月6日
专知会员服务
34+阅读 · 2020年11月26日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
45+阅读 · 2020年5月23日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
数字孪生模型构建理论及应用
专知
7+阅读 · 2022年4月20日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
【数字孪生】从CAD数据到数字孪生
产业智能官
22+阅读 · 2019年11月11日
【数字孪生】九论数字孪生
产业智能官
57+阅读 · 2019年7月6日
ICLR 2019论文解读:深度学习应用于复杂系统控制
机器之心
11+阅读 · 2019年1月10日
【APS】PCB企业如何实现APS自动排程系统
产业智能官
12+阅读 · 2018年9月24日
神经网络结构在命名实体识别(NER)中的应用
全球人工智能
11+阅读 · 2018年4月5日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
小贴士
相关VIP内容
【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
数字孪生模型构建理论及应用
专知会员服务
221+阅读 · 2022年4月19日
专知会员服务
32+阅读 · 2021年9月14日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
94+阅读 · 2021年2月6日
专知会员服务
34+阅读 · 2020年11月26日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
45+阅读 · 2020年5月23日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
相关资讯
数字孪生模型构建理论及应用
专知
7+阅读 · 2022年4月20日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
【数字孪生】从CAD数据到数字孪生
产业智能官
22+阅读 · 2019年11月11日
【数字孪生】九论数字孪生
产业智能官
57+阅读 · 2019年7月6日
ICLR 2019论文解读:深度学习应用于复杂系统控制
机器之心
11+阅读 · 2019年1月10日
【APS】PCB企业如何实现APS自动排程系统
产业智能官
12+阅读 · 2018年9月24日
神经网络结构在命名实体识别(NER)中的应用
全球人工智能
11+阅读 · 2018年4月5日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员