项目名称: 微流控芯片与质谱联用进行单细胞核苷代谢轮廓分析研究

项目编号: No.21305074

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 高丹

作者单位: 清华大学

项目金额: 25万元

中文摘要: 单细胞代谢组学研究有助于疾病的早期诊断和疾病进程的监测,具有十分重要的学术意义和应用价值。但是常规的分析方法对单细胞难于操纵,且样品预处理过程会导致单细胞内微量的代谢物部分丢失,极大地降低检测灵敏度。因此本项目建立微流控芯片与质谱联用的新技术来克服上述缺点,并以单细胞核苷代谢轮廓分析为例开展研究。本项目利用微加工技术在聚二甲基硅氧烷/玻璃复合芯片上制做用于单细胞操纵、固定、溶膜、微固相萃取柱等功能单元,并根据nanoESI源的结构特点直接用集成有整体柱的毛细管将微流控芯片与质谱连接,实现单细胞内代谢物的提取、富集、分离以及在线质谱检测,获得单细胞核苷代谢轮廓谱图。此外,还与代谢组学的数据分析技术相结合实现核苷的结构鉴定。该研究平台还可以通过集成多个平行的功能单元实现高通量的单细胞核苷代谢轮廓分析,极大地提高分析效率,并降低成本。

中文关键词: 微流控芯片;质谱;单细胞;核苷;代谢轮廓

英文摘要: The study of single cell metabolomics is very useful for the eary diagnosis of disease and disease progress monitoring. It has very significant higher academic and application values. However, the conventional analytical methods is difficult for single cell manipulation, and the trace amounts of metabolites in single cells are easy to loss during the sample preparation process, which can lead the detection sensitivity largely reduced. Therefore, this research project is willing to establish the microfluidic and mass spectrometry combination system to conquer the above disadvantages, and takening the single cell metabolomic profiling of nucleosides as an example to research. In this project, a polydimethylsiloxane/glass microchip was fabricated using microfabrication technology, which contained single cells manipulation, immobilization and lysis unit and microsolid phase extraction unit. According to the structure of nanoESI source, a fused-silica capillary integrated with monolith was used to connect microfluidic device with mass spectrometry. It could realize the extraction and concentration, separation and online detection of metabolites of single cells, and the nucleoside metabolomic profiling spectra of single cells could be finally obtained. Besides, the metabolomics data analysis techniques were applied fo

英文关键词: microfluidics;mass spectrometry;single tumor cells;nucleosides;metabolomic profiling

成为VIP会员查看完整内容
0

相关内容

专知会员服务
77+阅读 · 2021年10月12日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
133+阅读 · 2021年9月20日
【干货书】健康和生命科学的数据文本处理,107页pdf
专知会员服务
41+阅读 · 2021年7月11日
【干货书】Python高级数据科学分析,424页pdf
专知会员服务
114+阅读 · 2020年8月7日
【干货书】图形学基础,427页pdf
专知会员服务
145+阅读 · 2020年7月12日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
24+阅读 · 2020年2月23日
人工智能预测RNA和DNA结合位点,以加速药物发现
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
专知会员服务
77+阅读 · 2021年10月12日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
133+阅读 · 2021年9月20日
【干货书】健康和生命科学的数据文本处理,107页pdf
专知会员服务
41+阅读 · 2021年7月11日
【干货书】Python高级数据科学分析,424页pdf
专知会员服务
114+阅读 · 2020年8月7日
【干货书】图形学基础,427页pdf
专知会员服务
145+阅读 · 2020年7月12日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
24+阅读 · 2020年2月23日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员