项目名称: 用于青藏高原研究的高分辨率大气环流模式发展

项目编号: No.91337110

项目类型: 重大研究计划

立项/批准年度: 2014

项目学科: 天文学、地球科学

项目作者: 包庆

作者单位: 中国科学院大气物理研究所

项目金额: 90万元

中文摘要: 青藏高原通过其动力和热力作用对天气和气候施加重要影响。尤其是青藏高原斜坡的热状况对季风形成和变异起着控制作用。气候模式中对地形效应的正确处理,对其模拟和预测效果有重要影响!目前所有模式对东亚季风的模拟误差大与地形处理不准确有关,也与模式分辨率偏低有关。 本项目拟提高大气环流模式F/SAMIL水平分辨率至25公里;重点研发与青藏高原地-气耦合系统密切相关的参数化过程: 设计考虑三维地形对太阳辐射的遮挡效应(“影子效应”)的地-气通量方案。通过提高模式分辨率和改进高原地-气耦合系统通量的表述,提高模式的气候模拟性能。 项目拟回答的关键科学问题:模式水平分辨率如何影响高原地-气耦合系统的气候特征;三维地形的遮挡效应对高原地-气耦合系统和气候效应的敏感性评估。

中文关键词: 高分辨率;气候系统模式发展;自主版权显示对流降水方案;青藏高原虚假降水;

英文摘要: The Tibetan Plateau (TP) has an important impact on the weather and climate through the dynamic and thermal effects. Especially, the thermal state of TP slope controls the formation and variation of Asian monsoon. There is significant impacts of topographical effects in climate models on the simulations and predictions of climate! The common biases of the climate models in simulations of East Asian Monsoon are associated with the unrealistic topographies, as well as the lower horizontal resolutions. This proposal is developing a high resolution AGCM up to 25km named F/SAMIL, improving the model physics especially related with the physical processes of the land-atmosphere interaction over TP, designing a scheme of 3 demential topography on surface radiation budget. By increasing horizontal resolutions and developing the key model physics related with the air-land flux, the performance of the model will be improved.Key scientific questions: what are the impacts of AGCM horizontal resolution on climate effects of TP? The evaluation of the sensitivity of 3D-MCR on the air-land fluxes and climate effects of TP.

英文关键词: High resolution;Development of climate system model;Revolve convectional precipitation scheme;Positive precipitation bias on the Southern Tibet;

成为VIP会员查看完整内容
0

相关内容

空天地一体化通信系统白皮书
专知会员服务
174+阅读 · 2022年2月26日
专知会员服务
13+阅读 · 2021年9月23日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
37+阅读 · 2021年5月9日
小目标检测技术研究综述
专知会员服务
121+阅读 · 2020年12月7日
内嵌物理知识神经网络(PINN)是个坑吗?
PaperWeekly
14+阅读 · 2022年2月14日
从哈勃到韦伯,「宇宙之眼」是怎样炼成的?
折叠屏手机能否成为主流?
ZEALER订阅号
0+阅读 · 2021年12月11日
模拟整个地球:英伟达Earth-2超级计算机即将上线
机器之心
0+阅读 · 2021年11月16日
趣解读 | 重构三维植被表型,计算呈现自然之美
中国科学院自动化研究所
0+阅读 · 2021年9月2日
已删除
将门创投
13+阅读 · 2019年4月17日
深度学习的图像修复
AI研习社
22+阅读 · 2019年3月28日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
From Books to Knowledge Graphs
Arxiv
0+阅读 · 2022年4月22日
Arxiv
14+阅读 · 2019年11月26日
小贴士
相关主题
相关VIP内容
空天地一体化通信系统白皮书
专知会员服务
174+阅读 · 2022年2月26日
专知会员服务
13+阅读 · 2021年9月23日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
37+阅读 · 2021年5月9日
小目标检测技术研究综述
专知会员服务
121+阅读 · 2020年12月7日
相关资讯
内嵌物理知识神经网络(PINN)是个坑吗?
PaperWeekly
14+阅读 · 2022年2月14日
从哈勃到韦伯,「宇宙之眼」是怎样炼成的?
折叠屏手机能否成为主流?
ZEALER订阅号
0+阅读 · 2021年12月11日
模拟整个地球:英伟达Earth-2超级计算机即将上线
机器之心
0+阅读 · 2021年11月16日
趣解读 | 重构三维植被表型,计算呈现自然之美
中国科学院自动化研究所
0+阅读 · 2021年9月2日
已删除
将门创投
13+阅读 · 2019年4月17日
深度学习的图像修复
AI研习社
22+阅读 · 2019年3月28日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
微信扫码咨询专知VIP会员