项目名称: 超高速SiGe BiCMOS光接收机前端电路低噪声设计方法研究

项目编号: No.61504106

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 李丹

作者单位: 西安交通大学

项目金额: 21万元

中文摘要: 高带宽是光接收机高速传输的基本要求,而低噪声则是衡量光接收机性能的最核心指标。传统的光接收机前端电路中,决定系统噪声性能的前置放大器一般采用基于并联反馈结构的跨阻放大器。随着电路带宽要求进入数十GHz领域,这种经典结构日益受限于其内在的跨阻约束,噪声性能随带宽增加而迅速下降。为解决这一问题,本项目旨在探索以低带宽跨阻放大器加带宽均衡器的新型两级结构:通过将噪声和带宽目标分离,以先解决噪声后解决带宽的方式,打破一级结构中的跨阻约束限制,最终实现低噪声和高带宽目标。同时,在晶体管级电路层面,引入各个噪声源的多元优化,配置电路设计最优参数,进一步优化噪声。最后,为保证系统在各种条件下的最佳工作状态,引入增益自动控制环路、均衡器自适应环路和直流失调消除环路。系统将采用较深亚微米CMOS成本更低的SiGe BiCMOS来设计,最终实现一种高性能、低成本、高集成度的低噪声光接收机前端电路设计。

中文关键词: 跨阻放大器;SiGe;BiCMOS;光接收机;低噪声;超宽带

英文摘要: Large bandwidth guarantees high-speed transmission of optical receivers, while low noise fundamentally set tones of the receiver performance. In conventional implementation of optical receiver circuits, the pre-amplifier that determines the noise performance usually adopts shunt-feedback-based transimpedance amplifiers (TIA). As bandwidth requirements go into tens-of-GHz range, this structure suffers from its intrinsic Transimpedance Limit, leading to noise deterioration as bandwidth keeps going high. To solve this problem, this project explores a new architecture comprising a low-bandwidth TIA followed by a bandwidth equalizer. By separating noise and bandwidth targets, solving noise first and bandwidth later, Transimpedance Limit can be effectively circumvented while eventually satisfying both noise and bandwidth requirements. Meanwhile, in transistor circuits level, multiple noise sources will be optimized together to help configure core design parameters and achieve further improved noise. Finally, to secure receiver performance under various conditions, three different feedback loops, namely AGC loop, equalization adaptation loop and DC offset cancellation loop will be introduced. The optical receiver will be realized in SiGe BiCMOS rather than expensive advanced CMOS for lower cost, and ultimately enabling low-noise design with overall optimum performance, cost and integration.

英文关键词: transimpedance amplifier;SiGe BiCMOS;optical receiver;low-noise;broadband

成为VIP会员查看完整内容
0

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
18+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
【博士论文】集群系统中的网络流调度
专知会员服务
42+阅读 · 2021年12月7日
专知会员服务
35+阅读 · 2021年2月20日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
29+阅读 · 2021年1月9日
CPVC19大会日程 I 新一代光伏变换器技术论坛
光伏专委会CPVS
0+阅读 · 2022年4月14日
MySQL 深潜 - MDL 锁的实现与获取机制
阿里技术
0+阅读 · 2022年3月11日
华为新机曝光:麒麟芯片,有 5G!
ZEALER订阅号
0+阅读 · 2022年2月18日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
深度学习之图像超分辨重建技术
机器学习研究会
12+阅读 · 2018年3月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Risk-Averse Receding Horizon Motion Planning
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
18+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
【博士论文】集群系统中的网络流调度
专知会员服务
42+阅读 · 2021年12月7日
专知会员服务
35+阅读 · 2021年2月20日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
29+阅读 · 2021年1月9日
相关资讯
CPVC19大会日程 I 新一代光伏变换器技术论坛
光伏专委会CPVS
0+阅读 · 2022年4月14日
MySQL 深潜 - MDL 锁的实现与获取机制
阿里技术
0+阅读 · 2022年3月11日
华为新机曝光:麒麟芯片,有 5G!
ZEALER订阅号
0+阅读 · 2022年2月18日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
深度学习之图像超分辨重建技术
机器学习研究会
12+阅读 · 2018年3月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员