项目名称: 纳米金表面配体的核磁共振研究

项目编号: No.21274060

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 薛奇

作者单位: 南京大学

项目金额: 80万元

中文摘要: 通常用溶液NMR谱研究金纳米表面配体的结构,但是只能给出与表面有一定距离的配体部分的共振谱图,很难有效地表征与表面直接相连的那一部分的配体的结构。本课题拟用超高速魔角旋转固体NMR方法,来收集配体质子的完整的NMR谱。并试验用多级偶极滤波脉冲方法,定性地测量配体与金表面的结合力,从而判断出各种配体在置换反应中的相对活性。观察高分子配体在金表面的受限状态,研究表面单分子膜的玻璃化转变的变化规律。通过对金纳米合成过程中分离出的中间体的结构表征,研究合成机理,并改进制备高分子/纳米金的复合材料的方法。这一项目的开展,将建立有效的纳米金表面的配体结构的NMR表征方法,明确溶液法合成金纳米的机理,改进金纳米复合材料的制备方法。为深入了解纳米表界面的化学及物理本质提供研究方法及科学信息。

中文关键词: 固体核磁共振;金纳米颗粒;表面动力学;配体交换;受限效应

英文摘要: NMR measurements of the thiolate-protected gold nanoparticles (AuNPs) are usually performed using the traditional solution phase NMR. At present time, solution NMR spectroscopy is informative in molecule self-assembly, but mostly for the part of the ligand remote from the core of nanoparticles. We propose to use proton solid state NMR under ultra-fast magic angle spinning to collect spectra for full ligands. A N-pulse dipolar filter 1H experiment was used to select the 1H magnetization with a weak dipole-dipole interaction. This method has also been applied to distinguish a "mobile" component which has weaker dipolar interaction compared to the rigid ones. So that we can detect the reactivity of ligand exchange reaction and confinement effect on the deviation of glass transition temperature for thin film on AuNPs. We shall isolate the intermediates of the reaction of synthesis of Au/ligand particle, and to understand the reaction mechanism. This project will establish an effective method to detect ligand on AuNPs, make it clear for reaction mechanism, and probably improve the quality of AuNPs composites. And this project will enrich the fundamental chemistry and physics for the interface of nanoparticles.

英文关键词: solid state NMR spectroscopy;gold nanoparticles;surface dynamics;ligand exchange;nanoconfinement

成为VIP会员查看完整内容
0

相关内容

AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
121+阅读 · 2021年4月29日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
31+阅读 · 2021年2月17日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
25+阅读 · 2018年1月24日
小贴士
相关主题
相关VIP内容
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
121+阅读 · 2021年4月29日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
31+阅读 · 2021年2月17日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
25+阅读 · 2018年1月24日
微信扫码咨询专知VIP会员