项目名称: 量子网络中容错量子传态的理论研究

项目编号: No.11475254

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 周端陆

作者单位: 中国科学院物理研究所

项目金额: 82万元

中文摘要: 本项目立项研究量子网络中容错量子态传送相关的理论问题。这里量子传态中的容错性所针对的错误主要来源于量子网络中粒子初态制备的不完美和在传态过程中环境噪声的影响。已有的量子网络中量子传态方向的研究工作主要集中在一维1/2自旋链体系,目前已取得了一系列重要的进展。本项目首先将进一步深化该方向的研究,如发展有效的理论方法处理相关的量子动力学问题,以及研究外界环境对一维自旋链中量子传态的影响。在此基础上,我们将研究由微腔、二能级或三能级(人工)原子组成的一维或二维量子网络中容错性量子传态问题。特别是,我们将研究微腔中任意Fock态的传递,以及研究具体物理体系中(如超导Josephson结-微腔体系)抗外界环境干扰的量子传态方案。我们的研究将为量子网络中容错性量子传态的发展提供理论。

中文关键词: 量子物理;量子信息处理;量子通信

英文摘要: Our project aims to study the related theoretical problems in fault-tolerant quantum state transfer in a quantum network. Here the errors in quantum state transfer we consider come from two aspects: the imperfect preparation of the initial states of the quantum network and the noise from the environment during the process of quantum state transfer. The studies done so far mainly focus on the system of a 1/2-spin chain, and a series of important contributions have been made in the field. Along this direction, we will further develop an effective theoretical method to deal with the related quantum many-body dynamics problem, and studies the effect of the environments on quantum state transfer along a 1/2-spin chain. Based on this foundation, we will study fault-tolerant quantum state transfer in a quantum network composed by two-level atoms, three-level atoms, and (or) micro-cavities for one or two dimensional configurations. In addition, we will study how to defend the noise effect from the environment on quantum state transfer in some concrete systems (e.g. Josephson-junction micro-cavity system). Our studies will laid the theoretical foundation for fault-tolerant quantum state transfer in quantum network, and presents the theoretical proposal of fault-tolerant quantum state transfer in concrete physical systems.

英文关键词: quantum physics;quantum information;quantum communication

成为VIP会员查看完整内容
0

相关内容

【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
31+阅读 · 2020年10月13日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
专知会员服务
21+阅读 · 2020年9月14日
专知会员服务
42+阅读 · 2020年7月29日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
IBM推出127量子比特处理器,超越谷歌和中科大
量子位
0+阅读 · 2021年11月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Arxiv
32+阅读 · 2021年3月8日
小贴士
相关VIP内容
【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
31+阅读 · 2020年10月13日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
专知会员服务
21+阅读 · 2020年9月14日
专知会员服务
42+阅读 · 2020年7月29日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员