项目名称: 基于弱监督贝叶斯推断模型的多无人机协同跟踪技术研究

项目编号: No.61503185

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 自动化技术、计算机技术

项目作者: 王寅

作者单位: 南京航空航天大学

项目金额: 21万元

中文摘要: 由于目标运动的不确定性和应用环境的复杂性,使用单无人机执行目标跟踪任务时无法完全突破由于目标遮挡所导致目标丢失的技术瓶颈。通过多无人机的协同能够获取多个视角的目标状态信息,是解决目标遮挡问题的有效手段。为实现对目标的协同跟踪,首先要建立目标在多个无人机视域内的运动分布模型以及目标转移的时空约束,然后以此为条件求解目标在多无人机视域中的匹配问题。针对这两类子问题彼此相互关联但单独求解困难的问题特性,本课题基于“共治”思想,将提出一种基于贝叶斯推断理论的求解策略,达到同时估计目标运动分布模型和关联目标标记的目的。为解决由于目标和多无人机之间机动所引起的模型参数变化问题,本课题拟提出一种仅依靠“正包”样本的多示例学习机制,能够利用自动生成的训练集实现推断模型参数的在线估计。依托课题组所在的教育部工程研究中心的软硬件资源,拟开展模拟环境中进行多无人机协同跟踪的试验从而验证预期研究成果的有效性。

中文关键词: 无人机;协同跟踪;贝叶斯推断

英文摘要: Due to the uncertainties raised from both the application environment and the motion of the objects, it is difficult to maintain robust and continues tracking by using a single unmanned aerial vehicle (UAV), especially in the presence of object occlusions. Deployment of multiple UAVs allows for observation of the objects from different point of views, which is a nature solution to the occlusion problem in a visual tracking system. In order to achieve cooperation across UAVs, it is usually required to establish the spatial-temporal constraints of the targets moving across the field of view for each UAV, and then solve the associated correspondence problem. In this work, we present a general framework to simultaneously estimate the motion distribution of the objects and infer the correspondences of the target through the Bayesian Inference method. In addition, we further develop a single bag multiple instance learning (MIL) method, which allows predicting instance labels by using only positive bags. This newly developed MIL is applied to solve the Bayesian inference model training problem, which improves the prediction accuracy when compared with commonly used unsupervised training scheme. The efficiency and flexibility of the proposed techniques would be demonstrated in simulated scenarios using multiple small UAV platforms.

英文关键词: Unmanned aerial vehcile;Cooperative tracking;Bayesian inference

成为VIP会员查看完整内容
12

相关内容

不需要驾驶员登机驾驶的各式遥控飞行器。
【博士论文】基于深度学习的单目场景深度估计方法研究
专知会员服务
86+阅读 · 2021年9月4日
【CMU博士论文】开放世界目标检测与跟踪,168页pdf
专知会员服务
58+阅读 · 2021年6月14日
专知会员服务
29+阅读 · 2021年1月9日
【CMU】基于图神经网络的联合检测与多目标跟踪
专知会员服务
56+阅读 · 2020年6月24日
【分享】ICCV 2021第二届“无人机跟踪”挑战赛冠军和最佳论文
中国图象图形学学会CSIG
2+阅读 · 2021年8月27日
【CVPR2021】基于Transformer的视频分割领域
专知
2+阅读 · 2021年4月16日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
无人机集群对抗研究的关键问题
无人机
55+阅读 · 2018年9月16日
基于深度学习的目标检测算法综述
AI研习社
14+阅读 · 2018年4月25日
论文 | 基于RNN的在线多目标跟踪
七月在线实验室
31+阅读 · 2017年12月27日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
10+阅读 · 2020年6月12日
小贴士
相关资讯
【分享】ICCV 2021第二届“无人机跟踪”挑战赛冠军和最佳论文
中国图象图形学学会CSIG
2+阅读 · 2021年8月27日
【CVPR2021】基于Transformer的视频分割领域
专知
2+阅读 · 2021年4月16日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
无人机集群对抗研究的关键问题
无人机
55+阅读 · 2018年9月16日
基于深度学习的目标检测算法综述
AI研习社
14+阅读 · 2018年4月25日
论文 | 基于RNN的在线多目标跟踪
七月在线实验室
31+阅读 · 2017年12月27日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员