项目名称: 强光光学元件零缺陷加工理论及关键工艺研究

项目编号: No.51305450

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 机械、仪表工业

项目作者: 关朝亮

作者单位: 中国人民解放军国防科学技术大学

项目金额: 26万元

中文摘要: 高通量条件下光学元件不发生激光损伤而稳定运行是激光核聚变系统点火成功的关键。熔石英光学元件大量应用在激光核聚变系统,材料本征激光损伤阈值约为150J/cm^2,但实际加工元件仅为2J/cm^2。美国政府调查表明,加工引入缺陷而导致阈值下降是国家点火装置面临的三大挑战之一。材料脆性和塑性去除产生的裂纹、划痕是致命缺陷,若不能有效抑制或去除将严重制约阈值的提高。项目针对熔石英材料创新提出弹性域去除加工方法:引入增强化学反应提高硅氧键能弱化效率,发明动压浮动抛光装置实现弹性域去除,革新抛光盘结构实现化学反应与弹性域去除一体化。由于去除过程不引起材料脆性和塑性变化,故有望实现零缺陷加工。主要探索弱化硅氧键能的化学机制、弹性域材料去除的基本条件以及原有缺陷的演变规律等科学问题。通过创新弹性域去除工艺理论与方法,实现零缺陷加工,优化现行工艺流程,满足激光核聚变系统8J/cm^2的激光损伤阈值设计要求。

中文关键词: 强光光学元件;零缺陷;弹性域;激光损伤阈值;光学制造

英文摘要: Improving the load capacity of large laser driver system is ritical to Inertial Confinement Fusion (ICF). The accountability Bureau of USA independent investigation concluded: processing defect induced damage threshold decline is one of three major science and technology challenge to realize ICF. Large laser driver system using a large number of fused quartz material optical elements, its intrinsic threshold reached more than 150 joules per square centimeter, but after processing can achieve only about 2 Joule, processing defects are the main factor of decreasing the laser induced damage threshold (LIDT). Research shows, brittle and plastic removal cracks, scratches are fatal flaws. These defects, if not effectively removal and inhibition, will affect the LIDT threshold increase. The project put forward the material removal process in elastic region, due to not cause brittle and plastic changes, the processing will not bring fatal flaw, can achieve damage free processing. Mainly carried out elastic domain processing mechanism, implementation condition, processing method and in the entire process of optimization and other key technology research, is committed to improving the LIDT. Through the innovation process, to achieve more than 8 joules per square cm laser flux, meet the practical requirements of ICF system

英文关键词: intense laser optical elements;damage free;elastic domain;laser induced damage threshold;optical manufacture

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
127+阅读 · 2022年4月8日
专知会员服务
22+阅读 · 2021年8月23日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
110+阅读 · 2021年4月7日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
GitTables: A Large-Scale Corpus of Relational Tables
Arxiv
0+阅读 · 2022年4月15日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
微信扫码咨询专知VIP会员