项目名称: 接枝型聚电解质水溶液的剪切诱导自增粘特性机理与构效关系

项目编号: No.51473145

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 上官勇刚

作者单位: 浙江大学

项目金额: 84万元

中文摘要: 与传统的非牛顿流体剪切增粘现象不同,接枝型聚电解质-壳聚糖-丙烯酰胺共聚物(GPAM)的水溶液呈现一种独特的剪切诱导自增粘现象,其具有的增粘稳定性、可控性等特征使得该现象在拓展聚电解质材料工程应用范围和应用功效方面具有重要的潜在价值。本申请拟通过对这一新的特殊流变现象及相关因素进行系统研究,从理论上揭示引起GPAM剪切诱导自增粘现象的化学结构机制,探明剪切诱导自增粘行为的分子结构演化机理;掌握链结构及外界因素对GPAM剪切诱导自增粘行为的影响规律,建立接枝型聚电解质分子链结构-外界因素-自增粘行为关联机制;探索通过分子设计制备具有优异剪切诱导自增粘特性和其他功能的新型聚电解质材料,为发展聚电解质溶液理论与高分子流变学、高效利用剪切诱导自增粘特性、开发新型高性能聚电解质功能材料提供实践基础与理论指导。

中文关键词: 流变行为;聚电解质;分子间相互作用;剪切;自增粘

英文摘要: Differing form the conventional shear-thickening demonstrated by non-Newtonian fluid, a distinctive shear induced self-thickening of graft polyelectrolyte, chitosan-graft-polyacrylamide (CS-g-PAM, GPAM) aqueous solution was observed, and the maintainable and controllable thickening effect may be significant and useful in expanding scope of application and improving the performance of polyelectrolyte materials. In the project, based on the above findings the further investigations about this shear induced self-thickening of GPAM will be conducted and subsequently the original and the mechanism of this shear induced self-thickening behavior of GPAM will be discussed in detail. Furthermore, the effects of various factors including chemical structure of copolymer, temperature, pH, shear condition etc. on self-thickening will be systemically investigated, and the correlation among structure, external condition and self-thickening performance will be established. The success of this project will be helpful for the developments of polymer rheology and polyelectrolyte solution theory,and provide essential theoretic foundation for fabrication of polyelectrolyte with excellent shear induced self-thickening property and the related application.

英文关键词: rheological behavior;polyelectrolyte;intermolecular interaction;shear;self-thickening

成为VIP会员查看完整内容
0

相关内容

专知会员服务
27+阅读 · 2021年9月10日
专知会员服务
14+阅读 · 2021年8月29日
专知会员服务
29+阅读 · 2021年8月27日
【干货书】线性代数及其应用,688页pdf
专知会员服务
168+阅读 · 2021年6月10日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
专知会员服务
29+阅读 · 2021年2月17日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
59+阅读 · 2021年1月6日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
清华计图开源:智能P图神器DeepFaceEditing
机器之心
0+阅读 · 2021年5月6日
CSIG云上微表情第十期研讨会成功举办--微表情识别能力测验研究
CSIG机器视觉专委会
2+阅读 · 2020年12月14日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关VIP内容
专知会员服务
27+阅读 · 2021年9月10日
专知会员服务
14+阅读 · 2021年8月29日
专知会员服务
29+阅读 · 2021年8月27日
【干货书】线性代数及其应用,688页pdf
专知会员服务
168+阅读 · 2021年6月10日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
专知会员服务
29+阅读 · 2021年2月17日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
59+阅读 · 2021年1月6日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
清华计图开源:智能P图神器DeepFaceEditing
机器之心
0+阅读 · 2021年5月6日
CSIG云上微表情第十期研讨会成功举办--微表情识别能力测验研究
CSIG机器视觉专委会
2+阅读 · 2020年12月14日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员