项目名称: III-V族半导体微腔中激子极化激元的模式剪裁与反聚束效应研究

项目编号: No.11304015

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 张用友

作者单位: 北京理工大学

项目金额: 25万元

中文摘要: 半导体微腔是微纳光学中操纵光子的核心器件之一,而光子反聚束是量子通信器件单光子源的理论基础,所以研究基于半导体微腔的单光子源具有重要应用价值。本项目拟从理论上研究半导体微腔中激子极化激元的模式剪裁与反聚束效应,主要内容如下:拟利用周期和缺陷光栅等微纳结构,剪裁微腔光学模式,进而剪裁激子极化激元模式;通过模式剪裁增强激子极化激元非线性相互作用和量子干涉效应,从而提高其反聚束性能;拟结合激子极化激元的外场响应,研究其反聚束行为与模式剪裁和外场的物理关系。方法上,拟采用多模耦合转移矩阵理论和有限元模拟,研究不同微纳结构对微腔光学模式和激子极化激元模式的剪裁性能;拟采用量子主方程和关联函数,研究激子极化激元的量子相干性和反聚束效应,并确定反聚束条件。鉴于Ⅲ-Ⅴ族氮化物量子材料具有较大激子束缚能(如GaN量子阱约为40 meV),所以预计本项目能够实现工作在室温的半导体微腔单光子源。

中文关键词: 激子极化激元;微纳光学;波导;微腔;

英文摘要: Semiconductor microcavity is one of key device manipulating photons in micro/nano-photonics, and photon anti-bunching is the theoretical basis of single photon source in quantum communication, so it is of great value to study the single photon source based on semiconductor microcavities. The present project aims at theoretically studying the mode tailoring and anti-bunching effects of exciton polaritons in semiconductor microcavities. Main contents of the present project are as follows. Micro/nano-structures, such as periodical or defected lattices, are used to tailor the optical modes of microcavities and the corresponding exciton polariton modes. By the mode tailoring, we study how to enhance the nonlinear interaction and quantum interference effects between exciton polaritons, and how to improve the anti-bunching behavior of exciton polaritons. Combining the response of exciton polaritons on the applied fields, we plan to study the physical relations of the exciton-polariton anti-bunching behavior with the mode tailoring and applied fields. In calculation, multi-mode coupled transfer matrix and finite element simulation will be used to study the tailoring effects of the different micro/nano-structures on the microcavity optical modes and exciton polariton modes. Quantum main equations and correlation function

英文关键词: Exciton polariton;Micro/nano photonics;Waveguides;Microcavities;

成为VIP会员查看完整内容
0

相关内容

【经典书】时间序列分析:预测与控制(原书第5版),709页pdf
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
2021年中国量子计算应用市场研究报告
专知会员服务
37+阅读 · 2021年10月28日
专知会员服务
14+阅读 · 2021年7月4日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
或许平替的 iPad 电容笔才是你的选择
ZEALER订阅号
0+阅读 · 2022年3月26日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员