项目名称: 单个共轭聚合物分子的热电转换性能研究

项目编号: No.21273015

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 厉建龙

作者单位: 北京大学

项目金额: 82万元

中文摘要: 热电转换研究在当今能源日益紧缺的背景下是具有重大现实意义的研究领域。由于热能向电能的转换过程是高熵状态能量(热能)向低熵状态能量(电能)的转换过程(通常这种过程是不可逆的),效率较低,其理论上限就是理想卡诺热机的效率。从而,在热电转换过程中的引入纳米结构从而降低待转换热量所携带的熵,是提高热电转换效率的有效手段。尤其是,近期有理论预言发生在一维半导体材料中的热电转换过程甚至可以是热力学可逆的(PRL 94, 096601),其效率可以大大提高。本项目计划利用我们自己研发的低温扫描热电显微镜,在超高真空中构筑"金属针尖-单个共轭有机分子-金属衬底"分子节,研究具有"类一维导体"性质的单个共轭分子的热电转换性能(同时包括热导率、电导率及热电势三类性质的测量),以期揭示量子效应对实际低维热电材料的热电转换效率的影响,为设计、制备高转换效率热电材料提供理论和实验依据。

中文关键词: 扫描热电显微镜;导电分子;热电;单分子化学反应;

英文摘要: Investigation of thermoelectric energy conversion has become an attractive research field recently due to the dramatic global energy consumption increase. The conversion efficiencies in such process are intrincicly low due to the fact that they are converting energy in high entropy form to energy in low entropy form (which are generally irreversable), whose upper efficiency limit is given by that of an ideal Carnot Engine. As such, lowering entropy (E.g. via lowering the dimension of materials) of the heat in such process would be an effective way to improve the energy conversion efficiency. Furthermore, a recent thoeritical study (PRL 94, 096601) shows that thermoelectircal process in one dimensional material could even be reversible and the energy conversion efficiency could be dramatically improved. In this application, we plan to study the thermoelectrical energy conversion properties (electrical conductivity, thermal conductivity and Seebeck coefficient) of single-conjugated-molecules in "tip-single molecule-substrate" junctions via a home built Low Temperature Scanning Thermoelectric Microscope. Such study would help to shine light on the quantum size effect in thermoelectric conversion process in real low dimensional material, thus would help to design and fabricate better thermoelectic material in the fu

英文关键词: Scanning Thermoelectric microscope;Conducting Polymer;Thermoelectric;single molecular chemical reaction;

成为VIP会员查看完整内容
0

相关内容

深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
【经典书】全局优化算法:理论与应用,820页pdf
专知会员服务
153+阅读 · 2021年11月10日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
139+阅读 · 2020年12月3日
使用深度学习,通过一个片段修饰进行分子优化
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
12+阅读 · 2020年12月10日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
小贴士
相关主题
相关资讯
使用深度学习,通过一个片段修饰进行分子优化
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
微信扫码咨询专知VIP会员