项目名称: 应用光电子能谱技术研究有机太阳电池中聚合物阴极修饰层的作用机理

项目编号: No.51303217

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 谢方艳

作者单位: 中山大学

项目金额: 25万元

中文摘要: 聚合物太阳电池由于具有低成本、易加工、质量轻、可卷曲等诸多优点,已经成为最有希望的下一代太阳电池之一。具有醇/水溶性的共轭聚合物作为阴极修饰层,可同时提高器件的开路电压、短路电流和填充因子等参数,利用这一方法,我们实现了高达9.2%的能量转换效率。然而,这一方法对器件性能提高的机理尚不完全清楚。本项目以紫外/X射线光电子能谱(UPS/XPS)为主要研究手段,结合扫描探针显微镜(SPM)、接触角测试、紫外吸收光谱等技术,通过研究阴极修饰层对器件界面电子结构的影响,阴极修饰层和光活性层、电极之间的相互作用,及其与聚合物电子给体材料的化学结构之间的依赖关系,阐明醇/水溶性共轭聚合物提高器件性能的内在机制。通过本项目的研究,不仅对该类型阴极修饰层改善聚合物太阳电池性能的机理的理解具有重要的科学意义和应用价值,而且将为进一步设计和研发合适的阴极修饰层,研制高性能聚合物太阳电池提供新的思路和指导原则。

中文关键词: 聚合物太阳电池;聚合物阴极修饰层;光电子能谱;;

英文摘要: Polymer solar cells (PSCs) are promising renewable energy source because of their unique advantages of low-cost, large area, light weight and flexibility. The open-circuit voltage, short circuit current density, and fill factor can be simultaneously improved using alcohol/water-soluble polymer as the cathode interlayer, resulting in a power conversion efficiency up to 9.2%. However the mechanism of performance improvement of PSCs by alcohol/water-soluble conjugated polymer cathode interlayer is not clear. In this proposal, we use X-ray and ultraviolet photoelectron spectroscopy (UPS/XPS) combined with scan probe microscopy (SPM), water contact angle measurement and UV-Vis absorption spectra to study the influence of the interlayer on the energy level alignment at the device interface, the interaction between the active layer and the cathode interlayer, and the dependence of the device performance on the chemical structure of polymer donors. The results of this study will be helpful to understand the mechanism of the improvement of the performance of PSCs by this type cathode interlayer, and at the same time will provide in-deep strategies and theoretical basis to design more suitable cathode interlayer for highly-efficient PSCs.

英文关键词: polymer solar cell; polymer cathode interlayer;photoemission spectroscopy;;

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
人工智能在公安行业的落地应用
专知会员服务
38+阅读 · 2022年3月23日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
31+阅读 · 2021年5月7日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
CPVC19大会六大主题分会场亮点总结
光伏专委会CPVS
0+阅读 · 2022年4月24日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【知识图谱】中医临床知识图谱的构建与应用
产业智能官
60+阅读 · 2017年12月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
33+阅读 · 2021年12月31日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
102+阅读 · 2020年3月4日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
人工智能在公安行业的落地应用
专知会员服务
38+阅读 · 2022年3月23日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
31+阅读 · 2021年5月7日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员