项目名称: 基于单晶金刚石光波导的量子集成光子器件研究

项目编号: No.11304401

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 张彦峰

作者单位: 中山大学

项目金额: 30万元

中文摘要: 近年来,金刚石氮空位(NV)中心在量子信息学的应用备受关注。金刚石NV中心可以作为室温单光子源,其电子自旋可以被激光初始化和读取、在微波激励下翻转、还可和邻近原子的核自旋耦合,实现量子信息的产生、操纵和存储。因此,金刚石成为固态量子信息学研究的理想材料体系之一。金刚石NV中心自旋之间的长程相互作用可以经由光子为媒介来实现,在金刚石衬底上制备的集成光波导器件可以用来引导光子。由于金刚石的化学惰性,在单晶金刚石中制备光波导器件极具挑战性。尽管金刚石条形光波导和微环谐振腔等光子结构的制备已经取得了一定进展,但量子集成光路的功能元器件(例如方向耦合器)研究还很少,还不能在金刚石集成光路中进行量子光学实验。本项目计划在单晶金刚石上设计并制作基于光波导的集成光子器件(方向耦合器),演示双光子干涉等量子光学实验以验证金刚石量子集成光子器件的功能性。金刚石方向耦合器尚未见报道,这是本项目最大的创新点。

中文关键词: 单晶金刚石;等离子体刻蚀;光波导;光波导耦合器;微透镜

英文摘要: Recently, diamond nitrogen-vacancy (NV) centre has been the focus of scalable quantum information processing (QIP) due to its exceptional properties. Diamond NV centre is room temperature single photon source. Optical control together with microwave manipulation of individual electron spins in diamond has also been demonstrated. Furthermore, electron spin of a single NV can be coupled the nearby nuclear spin. Therefore, Diamond NV center is the ideal platform to generate, manipulate and store quantum information. This makes diamond one of the candidates for solid state QIP. The interaction between diamond NV centres can be realized through photons guided along integrated diamond optical waveguide circuits. Diamond is chemically inert and it is still a huge challenge to fabricate photonic structures in single crystal diamond. Although photonic structures like straight waveguide and micro-ring have been demonstrated in single crystal diamond, functional components like directional couplers that are fundamental in integrated quantum circuits are still unavailable. Therefore, it is still not possible to perform quantum optics measurement based on single crystal diamond photonic circuits. In this project, we plan to design and fabricate waveguide based integrated quantum photonic components (i.e. directional coupler)

英文关键词: single crystal diamond;plasma etching;waveguide;directional coupler;micro-lenses

成为VIP会员查看完整内容
0

相关内容

【经典书】图论,322页pdf
专知会员服务
120+阅读 · 2021年10月14日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月7日
Arxiv
15+阅读 · 2021年12月22日
An Attentive Survey of Attention Models
Arxiv
43+阅读 · 2020年12月15日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员