项目名称: 低温环境下的汞离子囚禁实验研究

项目编号: No.11204374

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 刘曲

作者单位: 中国人民解放军国防科学技术大学

项目金额: 28万元

中文摘要: 离子阱是实现频标的理想体系之一,但离子阱中的离子还是会受到外界环境的影响。低温环境能够减小阱中囚禁的离子与背景气体的碰撞,提高离子的囚禁时间,并能大幅度减小环境的黑体辐射对离子跃迁谱线的影响。因而有必要对低温环境下离子阱中的离子囚禁进行研究。目前美国国家标准与技术研究院(NIST)通过将离子阱放入液氦中进行低温环境下的离子囚禁实验。本项目计划使用环形离子阱囚禁汞离子,利用压缩制冷机对离子的周围环境进行冷却,开展低温环境下的汞离子囚禁实验,并在此基础上对环境的黑体辐射引起的频率移动进行研究。

中文关键词: 汞离子;激光;离子阱;194nm激光;

英文摘要: The iontrap is one of the ideal systems to achieve the frequency standard. However, the ion in the trap is still influenced by the environment. In low temperature environment, the collision between the trapped ion and the background gas is suppressed and the ion can stay longer in the trap. The influence of the transition frequency which is caused by the background radiation is also greatly reduced in low temperature environment. And it is, therefore, necessary to do some researches on trapping the ion in that situation. The research is carried out by means of immersing the trap in the liquid helium in National Institute of Standards and Technology (NIST). In this project, the research will be developed as follows. The mercury ion is supposed to be trapped in a ring trap. And the environment is going to be cooled using a compression refrigerator. Then the ion-trapping experiment will be developed in low temperature environment and the frequency shift caused by the blackbody radiation from the environment will be studied.

英文关键词: mercury ion;laser;ion trap;194nm laser;

成为VIP会员查看完整内容
0

相关内容

企业如何探索元宇宙,如何驾驭炒作和现实?(附报告)
【经典书】随机矩阵理论与无线网络,186和pdf
专知会员服务
49+阅读 · 2021年12月21日
【NeurIPS 2021】多视角对比图聚类
专知会员服务
34+阅读 · 2021年10月31日
专知会员服务
16+阅读 · 2021年8月6日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
57+阅读 · 2021年1月6日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
鲁棒模式识别研究进展
专知会员服务
40+阅读 · 2020年8月9日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
消失的千人计划
算法与数学之美
12+阅读 · 2019年4月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
23+阅读 · 2018年10月1日
小贴士
相关主题
相关VIP内容
企业如何探索元宇宙,如何驾驭炒作和现实?(附报告)
【经典书】随机矩阵理论与无线网络,186和pdf
专知会员服务
49+阅读 · 2021年12月21日
【NeurIPS 2021】多视角对比图聚类
专知会员服务
34+阅读 · 2021年10月31日
专知会员服务
16+阅读 · 2021年8月6日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
57+阅读 · 2021年1月6日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
鲁棒模式识别研究进展
专知会员服务
40+阅读 · 2020年8月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员