项目名称: 非线性抛物方程有限体积元方法的理论研究及应用
项目编号: No.11301456
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 陈传军
作者单位: 烟台大学
项目金额: 23万元
中文摘要: 本项目主要研究非线性抛物方程有限体积元方法的理论及应用。研究非线性抛物方程有限体积元方法数值解的存在性和唯一性,证明在一定条件下非线性抛物方程有限体积元方法的数值解是存在唯一的。结合两重网格算法研究非线性抛物方程的有限体积元方法,进行先验误差估计、后验误差估计和自适应算法研究。针对求解具有对流占优性的非线性抛物方程,为避免数值弥散和非物理震荡,保证计算精度和提高效率,拟采用特征线方法和迎风方法,提出特征和迎风两种两重网格有限体积元方法,并进行先验误差估计、后验误差估计和自适应算法研究。最后,研究这些算法在半导体器件数值模型中的应用。本项目的研究成果将为非线性抛物型方程提供几种高效的数值解法,进一步完善有限体积元方法的理论体系,并为半导体器件的数值模拟提供一种高效的数值方法。
中文关键词: 非线性;有限体积元;有限元;两层网格;后验误差估计
英文摘要: We study the numerical methods and its applications of the finite volume element method for the nonlinear parabolic equations. We will study the existence and uniqueness of the solution of the finite volume element method for the nonlinear parabolic equations and prove that the numerical solution of the finite volume element method for the nonlinear parabolic equations exists and is unique under some conditions. With the two-grid algorithm, we construct the two-grid finite volume element method for the nonlinear parabolic equations and study the priori error estimates, posteriori error estimates and the adaptive algorithm. When we solve the nonlinear parabolic equations with convection-dominated term, the numerical dispersion and nonphysical oscillations may appear. In order to avoid such numerical dispersion and nonphysical oscillations, to ensure the accuracy and efficiency, we will propose the characteristic and the upwind two-grid finite volume element method and study the priori error estimates, posteriori error estimates and the adaptive algorithm. Finally, we will study the applications of these algorithms in the numerical model of semiconductor device simulation. The results of the research will provide several high efficient methods for the nonlinear parabolic equations, further improve the theoretical
英文关键词: nonlinear;finite volume element;finite element;two-grid;a posteriori error estimates