项目名称: 非掺杂有机空穴传输材料的开发及应用

项目编号: No.21502088

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 刘建

作者单位: 南京林业大学

项目金额: 21万元

中文摘要: 有机空穴传输材料在有机无机杂化钙钛矿太阳能电池中扮演着非常重要的角色,包括改善界面的肖特基接触、空穴的转移和传输、抑制电荷复合等。目前为止,常用的有机空穴传输材料(如,spiro-OMeTAD和PTAA)空穴迁移率和电导率较低,无法直接用于钙钛矿太阳能电池并获得高效率,通常需要掺杂添加剂(如, 二(三氟甲基磺酸酰)亚胺锂,Li-TFSI)来提升器件的光电转换效率。然而,掺杂策略需要进行严格的条件优化(溶剂、掺杂剂和掺杂浓度等)。此外,锂盐Li-TFSI的易吸湿性导致电池的快速衰退,不利于钙钛矿太阳能电池的实际应用。因此迫切需要开发新的策略来避免P-型掺杂过程引起的各种问题。本项目拟通过分子设计合成等手段开发一系列具有高迁移率的非掺杂有机空穴传输材料应用于钙钛矿太阳能电池中,并探讨非掺杂有机空穴传输材料分子结构与电池光电性能的关系,旨在稳定的高效率钙钛矿太阳能电池的研究中取得突破性进展。

中文关键词: 空穴传输材料;非掺杂;有机无机杂化;太阳能电池

英文摘要: Organic hole-transporting materials have been shown to be important for organic-inorganic hybrid perovskite solar cells, playing a key role in hole transfer and transportation, retarding charge recombination and improving schottky contact. So far, the well-known hole-transporting materials (such as spiro-OMeTAD and PTAA) for perovskite solar cells have not usually performed efficiently in their pristine form due to their low mobility and conductivity, and p-type dopants (such as lithium bis(trifluoromethanesulfonyl)imide, Li-TFSI) have been frequently adopted to improve the cell performance. However, the p-type doping strategy requires strict optimization of the doping conditions (e.g., the solvent, dopants and doping concentrations). Moreover, lithium salt has aggravated cell performance degradation owing to its deliquescent behavior, which went against the practical application of perovskite solar cells. Therefore, it is significant and urgent to address such issues by new strategy. In this project, we will develop a series of dopant-free hole-transporting materials with high hole mobility by molecular engineering, and investigate their application in perovskite solar cells as well as the relationship between the molecular structure and the photovoltaic performance of the corresponding device. The aim of this project is making great progress in the research of stable and efficient perovskite solar cells.

英文关键词: hole-transporting materials;dopant-free;organic-inorganic hybrid;solar cells

成为VIP会员查看完整内容
0

相关内容

专知会员服务
52+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
104+阅读 · 2021年8月23日
【经典书】机器学习统计学,476页pdf
专知会员服务
121+阅读 · 2021年7月19日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
266+阅读 · 2020年6月10日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
DigiTimes:下一代iPhone的芯片将基于“4nm”工艺
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
专知会员服务
52+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
104+阅读 · 2021年8月23日
【经典书】机器学习统计学,476页pdf
专知会员服务
121+阅读 · 2021年7月19日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
266+阅读 · 2020年6月10日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员